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Abstract—As the ARM architecture has become the favored
platform for the fastest growing computing segment, the mobile
market, establishing a sound security architecture on the platform
is paramount. The frightening increase in malware for the
Android and iOS platforms in addition to the adoption of ARM
architectures outside of the mobile market only bolster this need.
In this paper, we investigate the ARM architecture as well as its
security and virtualization extensions available only on the newest
generation of ARM processors. Considering these extensions,
we present a concept for a multi-tiered security architecture
for mobile computing devices. Our concept combines a custom
TrustZone component and leverages the advanced features of the
Xen hypervisor to present an all encompassing framework for all
aspects of security including both load and runtime verification
of critical components, strong isolation between components, and
virtual machine introspection for anomaly detection.

I. INTRODUCTION

In recent years, the ARM architecture has become the
preferred platform of mobile systems, running over 95% of
smart-phones today [3]. As a direct result, malware targeting
the most popular operating systems of these devices, Android
and iOS, has proliferated. The problem is further exacerbated
by the inclusion of these devices into corporate networks in
bring-your-own-device (BYOD) scenarios. However, security
systems available for these platforms have largely lagged
behind their x86 counterparts. The recent extensions of CPU
features available on ARM, such as the virtualization exten-
sions, now open the door to port and extend existing security
paradigms to the mobile market.

Over the last decade, virtualization on x86 has become
a primary mechanism for IT systems consolidation, permit-
ting multiple guest operating systems to coexist on physical
hardware, separated by a limited interface exposed by the
hypervisor. Unlike processes within an operating system, a
hypervisor exposes less functionality for guests then the guest
operating system exposes to processes. This isolation has been
a core component of new computing paradigms, such as cloud
computing. Virtualization also found other use-cases focusing
on securing end-points, such as out-of-band security software,
like McAfee’s Deep Defender [1]. Virtualization also enables
the complete disaggregation and isolation of the end-user
experience, exemplified by projects such as Qubes OS [15].

In this paper, we introduce a conceptual security architec-
ture for ARM-based mobile platforms. We consider the secu-
rity and virtualization extensions only available on the newest
generation of ARM processors and present an architecture that

leverages each of the most relevant features to culminate in a
multi-tiered security architecture with features that include:

• load time verification of security critical components

• a custom TrustZone component for runtime verifica-
tion of the hypervisor

• strong isolation of components (e. g. multiple guest
VMs, a secure I/O VM, a crypto engine, an introspec-
tion engine)

• leveraging the Xen hypervisor’s XSM FLASK policy
framework for strict policy enforcement

The remainder of this paper is organized as follows: In
Section II we examine the ARM architecture in detail and high-
light the extensions and features relevant to our architecture. In
Section III we discuss relevant related work. Following this, we
present the blueprint of our novel mobile Security Architecture
in Section IV. Finally, we provide some concluding remarks
in Section V.

II. ARM ARCHITECTURE

In this section we offer necessary background regarding the
ARM architecture. We will focus on the most relevant aspects
for our architecture, namely the virtualization extensions and
the security extensions available on the Cortex A15.

A. Virtualization Extensions

With the Cortex A15, ARM released its first architecture
supporting virtualization. In this new architecture, ARM intro-
duces a single designated privilege level for the hypervisor -
the hyp mode - which runs as a higher privilege level than the
OS kernel and the user-space processes. This is in contrast to
the x86 architecture, which supports all privilege levels (ring
0-3) in both virtualized (VMX non-root) and non-virtualized
mode (VMX root). The architectures thus seemingly diverge;
however, if we consider how the x86 model has actually been
used in practice, we obtain a very similar picture to the ARM
model. All mainstream operating systems on x86 use a two-
ring model: the kernel running in ring 0 and user-space applica-
tions running in ring 3. As ring 1 and ring 2 aren’t utilized, this
model is equivalent to what ARM provides. The virtualization
extension on ARM also follow concepts established in the x86
world with type-1 (bare-metal) hypervisors, which are mostly
monolithic kernels running in root mode ring 0. While on
x86 it was a choice of the hypervisor to utilize only a single
ring, on ARM this choice is no longer present, thus putting



type-2 (hosted) hypervisors into a curious state which requires
significant work-around to support this architectures.

A very important feature that ARM introduced with its
virtualization extensions is the addition of two-stage pag-
ing (LPAE). This is a feature that drastically improves the
performance overhead of hardware virtualization in that the
hypervisor does not need to be involved in address translation
on page table misses. That is, prior to two-stage paging
schemes, the hypervisor maintained a secondary page table,
known as the shadow page table that provided all translations
from guest-virtual to host-physical addresses and required a
trap to the hypervisor every time this table needed to be
updated. With two-stage paging this is no longer necessary
as the MMU can perform the guest-virtual to guest-physical
address translation in one stage and the guest-physical to host-
physical address translation in the second stage without having
to involve the hypervisor.

In addition to CPU and memory virtualization, ARM
also provides extensions for virtualizing I/O [2]. This is an
often overlooked, but very important aspect of virtualization
as failing to isolate I/O devices to a single VM can lead
to severe security vulnerabilities [25]. This allows one to
avoid I/O overheads by allowing direct access to hardware
from a guest while isolating the I/O device such that the
device cannot influence other guests or the hypervisor itself
by accessing memory or intercepting interrupts. ARM calls
their I/O virtualization extension System MMU (SMMU).

Additionally, Varanasi et al. [19] point out that the ARM
architecture has several features that improve efficiency either
by the nature of the RISC architecture of ARM or by sup-
porting features that are generally expensive to do in software.
For example, the ARM architecture requires the hypervisor to
explicitly save and restore guest register state while the x86
architecture does this automatically upon entering and exiting
the guest. This results in the ability to perform lightweight
VM/hypervisor transitions on ARM if necessary. In general,
traps on ARM incur far less overhead than on the x86 architec-
ture. However, this also puts more burden on the programmer
to explicitly save and restore state where and when needed.

B. Security Extensions

In this section we introduce the ARM security extensions.
These extensions predate the virtualization extensions and are
technically a separate set of extensions, however they are
mandatory for the virtualization extensions and influence them
heavily.

The ARM security extensions provide a Non-Secure World
and Secure World, also referred to as the TrustZone (TZ) in
addition to a privilege level called Monitor Mode for facili-
tating the switch between the two worlds. Both Secure and
Non-Secure Worlds support User and Kernel Mode privilege
levels, while only the Non-Secure World supports the Hyp
Mode for virtualization.

In the ARM TZ, in addition to the privilege levels, virtual
memory may also be marked as either secure or non-secure.
This separation is implemented through the use of separate sets
of page-tables. The extra page-tables enable the secure world
to restrict access to its memory from the non-secure world.

Furthermore, it also gives the secure world more privileges,
so it is able to access both secure and non-secure memory.
To access non-secure memory, it leverages the Monitor mode
privilege level, in which it is able to read and write non-secure
memory, while at the same time executing code within secure
memory. Access of non-secure memory from the secure world
is only possible in Monitor mode. Additionally the CPU is able
to map non-secure memory into the secure memory space to
allow access to that memory inside the Secure World.

The Secure World is generally initialized during the boot
process and executes its own operating system (OS). To ensure
the integrity of the Secure World, this OS is generally digitally
signed by the OEM. This signature is then checked during load
time. An OS running inside the non-secure world is able to
interact with the secure world by using a dedicated instruction
- the Secure Monitor Call (SMC) - that triggers a predefined
interrupt within the secure world.

While no so called security extension exists for x86, the
concept of a privileged execution mode with its own restricted
memory area does exists on x86 - and in fact has existed for
long a time: the system management mode (SMM). Tradition-
ally, the SMM has been used by OEMs to provide software
workaround to hardware erratas and to provide critical power-
and thermal-management functionality. Similar to the ARM
TrustZone, the SMM is fully capable of memory segmentation,
thus it is technically possible to run a full OS in SMM. The
SMM also has access to the entire memory and hardware of
the system. Virtualization, just like in the ARM TrustZone, is
not supported in the SMM. As research has shown that the
SMM is vulnerable to cache poising attacks which may result
in code being injected into the SMM, compartmentalizing the
SMM has been a major engineering problem that also reflect
in ARM’s design of the TZ.

The core problem is with handling the switch between
normal mode and the SMM/TZ. On x86, this is done via so
called system management interrupts (SMIs) which may be
triggered either by hardware or software; on ARM by pre-
configured secure interrupts (SIs) or by executing the SMC
instruction. On x86 by default the SMIs are non-maskable
and preempt any other interrupts on the system, thus forcing
the execution of the handler in SMM. As a solution, Intel
introduced a new mode: the dual-monitor SMM. In this mode
instead of the actual interrupt handlers, only a hypervisor is
running in SMM which forwards the interrupts to a designated
VM. While the solution is viable, it adds significant complexity
to scheduling and to properly handling the various scenarios
that may arise during execution. Furthermore, it is unclear
which Intel CPUs actually support this mode. AMD and ARM
on the other hand decided that the switch mechanism (SMI and
SMC) should be trappable by the actual VMM, thus avoiding
having to run a full hypervisor in SMM/TZ. By trapping the
SMIs/SMCs into the VMM, these architectures both allow for
seamless virtualization of the most-privileged system mode,
reducing complexity while also providing strong isolation.

III. RELATED WORK

Over the last couple years significant research and develop-
ment has been devoted to off-load operations that are security
sensitive to the most privileged part of the system, such as the



TrustZone [5][9]. These operations include the enforcement of
digital rights management (DRM), secure I/O and even vTPM
functionality. The main benefit in off-loading these operations
to protected regions of the system is the tamper resistance
it provides against a malicious user. We argue however that
the increase in the code-base running in the most-privileged
mode decreases the security of the system under our threat
model. Similar problems have plagued the VMM layer in
recent years: the bloating of the VMM code-base resulted
in an increase of the VMM attack surface [4], [?]. Further
considering that a potential compromise of the TrustZone is
unrecoverable without extra layers of hardware protection, it
is essential that the use of the TrustZone is to be restricted to a
minimum. Such a minimal system has been recently proposed
by SPROBES [11] in which the TrustZone is used only to
provide kernel integrity protection.

Other academic work has considered using the TrustZone
as a virtualization platform without an actual hypervisor being
present [10]. As the TrustZone provides a completely sepa-
rate mode of execution and its own instruction set to allow
applications to switch to the TrustZone, as we discussed in
Section II, it naturally allows two operating systems to co-
exists on the same hardware. Indeed, the TrustZone can support
a variety of OS’s, and work has been done on porting both
L4 kernels and Linux to run in the TrustZone [23]. However,
a significant limitation is present in using the TrustZone for
virtualization, as the scheduling of the TrustZone OS depends
solely on the non-secure OS explicitly calling the TrustZone
OS, thus scheduling it for execution.

While the ARM TrustZone has been a difficult platform
to experiment with [24], significant research exists in using
the SMM on x86 for security purposes. As we outlined in
Section II-B, the SMM shares many characteristics with the
TZ, thus it is reasonable to discuss applications and results
from SMM based systems in our context. SICE used the
SMM as a general purpose compute mode to protect sensitive
workloads. HyperGuard [14], HyperCheck [22] and Hyper-
Sentry [4] utilized the SMM to implement runtime integrity
verification for the hypervisor running in normal-mode. These
works tackled the problem of periodically scheduling the SMM
to perform integrity verification using a variety of external
hardware events. Vasudevan et al. [20] further explored the
requirements to establish hypervisor integrity verification and
protection on the x86 hardware.

Other related work has looked into establishing strong
isolation between different (Android) applications. Gudeth et
al. [12] argue that proper isolation can only be provided by
using virtualization. They propose an architecture that uses a
bare-metal hypervisor to virtualize device drivers such that the
Trusted Computing Base (TCB) of the entire system can be
reduced. Bugiel et al. [6] on the other hand argue that practical
domain isolation can only be achieved by introducing isolation
into the OS itself. Their argument against virtualization is the
need to execute multiple OSs, which reduces the battery life
time of the device and thus makes its practical use unattractive.
They extended Android’s middleware layer to support both
application specific firewall functionality as well as Manditory
Access Control (MAC) by applying Tomoyo Linux. Aurasium
[26] is another approach to introduce isolation of different
applications within the android ecosystem without requir-

ing modification of the running operating system. Aurasium
repackages Android applications with its own instrumentation
code that intercepts calls to Androids Bionic libc library. Thus
Aurasium has a low-level view of the OS interactions triggered
by any Java application.

Another relevant research topic is bridging the semantic
gap between the monitoring and the monitored domain to be
able to introspect the running system from the outside. While
there already exists a lot of work on the x86 architecture like
InSight [16] and Volatility [21], there are only a handful of sys-
tems proposed for ARM and Android respectively. DroidScope
[27] reconstructs both the OS and Java-level semantics by
leveraging paravirtualization. By modifying QEMU’s internal
code translation engine it can instrument the running guest
OS in addition to Android’s Dalvik interpreter for execution
tracing. For performance reasons, this level of insight is unfor-
tunately not possible to derive in a full virtualized environment.
Also, Muller et. al. [13] used and extended the Volatility
framework to reconstruct the state of an Android system from
a forensic memory dump.

IV. TUM MOBILE SECURITY ARCHITECTURE

In the following we present the TUM Mobile Security
Architecture for the ARM platform. The goal of our framework
is to provide a flexible security architecture that allows appli-
cations to cohabit a multi-tiered security environment, such
as in the case of a bring-your-own-device setting. Our threat
model thus focuses on providing layered protection to the user
from external attackers. Excluded from our model are attackers
who may control the mobile infrastructure and/or hardware
components of the system (SIM card, NFC, etc.). Furthermore,
we operate with the assumption that the user of the device is
only part of the attack surface and is not an attacker himself.

The main principle of our architecture is the disaggregation
of the TCB with a layered access control mechanism that ex-
plicitly controls the interaction between system components, as
shown in Figure 1. In the following we discuss the components
of our architecture in detail.

A. Hypervisor integrity verification

As discussed in Section II-B, the TrustZone is the most
privileged component of the system, thus its exposed interface
and interaction with the rest of the system must be kept to an
absolute minimum. A potential compromise of the software
system within the TrustZone would result in an unrecoverable
security violation. While prior work has focused on using
the TrustZone to its full capability, going as far as running
Linux within the TrustZone, none of the practical applications
necessitate the use of the TrustZone for their operation. Unlike
a TPM chip, the TrustZone does not provide any advantage for
performing cryptographic routines, or expose secure storage.
The only advantage of the TrustZone is the separation of the
execution mode, which can be just as effectively provided by
a hypervisor. As such, if a hypervisor is present on the system,
the only functionality that justifies running in the TrustZone is
one where the TrustZone’s unique position is required: access
to the entire system to ensure the integrity of the TCB. Thus,
in our architecture, the TrustZone’s task is limited to the
boot-time verification of TCB components and the runtime
protection of the hypervisor.



Fig. 1. The TUM Mobile Security Architecture for multi-tiered environments

In our framework we are building on top of the bare-metal
hypervisor, Xen. The Xen hypervisor is considerably smaller
than a full featured OS. The dynamic runtime information
about domains is managed in Xenstore, a database running
within dom0, not the hypervisor itself. Hence, by the nature
of the Xen architecture, we anticipate that runtime integrity
verification only requires to compare a hash of all the hyper-
visors code and data sections to a trusted reference that is held
within the TrustZone.

A key component of the runtime verification from the
TrustZone is the trigger that switches the execution mode
from the hypervisor. While normally such switch is explicitly
triggered by either the hypervisor or a guest kernel, for
integrity verification such explicit calls cannot be relied upon,
as a compromised system may forgo such calls. As discussed
in Section III, on x86 this switching has been implemented by
additional hardware which periodically triggers the SMI inter-
rupt. Nevertheless, in our case, the transfer to the TrustZone
can be implicitly triggered by modifying the hypervisor page
tables to disable write access to the hypervisor’s memory after
booting finished. While the page-faults thus triggered are still
trapped into the hypervisor, a trap handler can be installed
that forwards all such events to the TrustZone which can then
decide to allow or deny the faulting operation. This way even
if a bug is exploited within the hypervisor, no modification to
the hypervisor’s code pages can happen without the explicit
permission of the TrustZone, guaranteeing the integrity of the
TCB. While return-oriented-programming (ROP) style attacks
pose another attack vector on the VMM [8], effective ROP
mitigation is still an open and separate research problem that
remains to be solved [17].

B. Disaggregating the TCB

For mandatory access control and for the disaggregation
of the TCB, Xen offers a native solution: the Xen Security
Modules (XSM). While XSM is a generic framework that
inserts hooks into all operations performed by the hypervisor,
the Flux Advanced Security Kernel (FLASK) is the access
control framework that specifies and enforces the security
policy. FLASK has been developed through several trusted

operating system research projects, managed jointly between
US National Security Agency, the Secure Computing Corpo-
ration, and the University of Utah, with the main goal of
separating security enforcement from security policy, better
isolating logical components of security systems [18].

One critical component present in the TCB of Xen is
the assignment of the physical hardware of the system to
dom0. While those physical hardware components can be later
reassigned to VMs securely via IOMMU, once the VM is
destroyed, the physical hardware is reassigned to dom0, thus
opening an attack surface on the TCB. However, with the latest
extensions to XSM, a separate hardware domain can be created
that is not part of the TCB. This separate IO domain can then
be configured to provide either a paravirtual proxy to the real
hardware, or to be the container where the physical hardware
is assigned to when no domain uses it via IOMMU. In such a
setup, dom0’s only role remains as the secure domain builder,
not being exposed to any other domains running within the
system. As such, the only verification of dom0 has to happen
at boot time, as once the system is booted, dom0’s integrity is
directly tied to the integrity of the hypervisor itself, and can not
be interacted with unless the hypervisor itself is compromised.

C. VMI

Further runtime integrity checking of domains not part of
the TCB can be implemented via XSM as well, with all the
security advantages virtualization provides. Virtual Machine
Introspection (VMI) has been proven in the x86 world to
be a viable method to create out-of-band security software
for both integrity verification and malware protection. VMI
relies on reconstructing high-level state information from the
low-level data provided by inspecting the virtual hardware
components of virtual machines, such as the memory and the
vCPU registers, commonly referred to as bridging the semantic
gap. On the lowest level, effective VMI requires the out-of-
band software to interpret the memory layout of the guest
OS by understanding its paging system. Once the OS paging
is interpreted, VMI can take advantage of more OS specific
information to reconstruct the state of the guest.

Beside static memory introspection, out-of-band security
softwares often require to continuously monitor the execution
of an active guest, which requires the guest to hand control
over at points that are deemed critical for the security software.
In order to provide a flexible mechanism for the security
software to choose such critical points, the key is to employ
native exceptions of the hardware to initiate trapping to the
hypervisor, which can then forward the trap to the security
software. One general avenue on x86 has been to inject
software breakpoints from the hypervisor into the guest at
important code locations [7]. On ARM however no such mech-
anism is present. However, instead of breakpoints, one can
inject undefined instructions which trigger UNPREDICTABLE
behavior. The ARM manual defines UNPREDICTABLE such
that it can be implemented to trigger a trap into the hypervisor
as long as there is another instruction available that can be used
for the trap. Thus it is dependent on the given implementation
whether exception trapping on the ARM architecture this way
is possible. Another avenue successfully deployed had been
the injection of SMC instructions, as discussed in Section III.
As the VMM can be configured to trap SMC instructions



from guests, this method can also be used to instrument guest
kernels.

As previously discussed, the ARM virtualization extensions
supports two stage paging similar to Intel’s EPT mechanism.
This is simply a second phase of memory translation that is
done directly in the MMU. In ARM parlance, the mechanism
is referred to as two stage paging whereby stage 1 translates the
guest’s virtual address to intermediate physical address (i. e.,
guest physical address) and stage 2 translates the intermediate
physical address to the physical address (i. e., host physical
address). Stage 2 of the translation process uses the same
page table structure that is available for stage 1 translation.
Interesting for VMI is that this paging structure allows one to
set a page’s execute-never flag (XN) such that pages are non-
executable and a page’s access permissions (APs) flags such
that pages are non-writable and/or non-readable. However, the
XN flag also requires read AP, thus, unlike with EPT in the
x86 world, there is no option to catch only read violations
without also catching instruction fetches for execution.

V. CONCLUSION

Within this paper we discussed new interesting features
provided by the ARM architecture and discussed how existing
research utilized the Security and Virtualization Extensions.
By building on top of both extensions and state of the art
hypervisor technology we presented a new security architecture
to enable various applications to co-habit the same hard-
ware. Our architecture maintains strong separation of software
components and provides fine-grained access control that is
essential for a multi-tiered security environment.
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