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Abstract

A significant problem of Gaussian process (GP) is its unfavorable scaling
with a large amount of data. To overcome this issue, we present a novel
GP approximation scheme for online regression. Our model is based on a
combination of multiple GPs with random hyperparameters. The model is
trained by incrementally allocating new examples to a selected subset of GPs.
The selection is carried out efficiently by optimizing a submodular function.
Experiments on real-world data sets showed that our method outperforms ex-
isting online GP regression methods in both accuracy and efficiency. The ap-
plicability of the proposed method is demonstrated by the mouse-trajectory
prediction in an Internet banking scenario.
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1. Introduction

Gaussian process (GP) is a promising Bayesian method for non-linear
regression and classification [19]. It has been demonstrated to be applicable
to a wide variety of real-world statistical learning problems. An important
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advantage of GP over other non-Bayesian models is the explicit probabilistic
formulation of the model, allowing one to assess the uncertainty of predic-
tions. In addition, since GP has a simple parameterization and the hyperpa-
rameters can be adjusted by maximizing the marginal likelihood, it is easy
to implement and flexible to use.

Nevertheless, GP is not always the method of choice especially for large
date sets. GP has inherently dense representations in the sense that all
training data is required for the prediction. The training procedure requires
computation, storage and inversion of the full covariance matrix, which can
be time-consuming. Furthermore, the Bayesian posterior update to incor-
porate data is also computationally cumbersome. These drawbacks prevent
GP from applications with large amounts of training data that require fast
computation, such as learning motor dynamics in real-time.

Much research in recent years has focused on reducing the computational
requirements of GP on large data sets. Many of these methods are based
on a small set of training inputs, which summarizes the bulk of information
provided by all training data [21, 20, 22, 18]. Other methods make structural
assumptions about the covariance matrix so that a GP can be decomposed
into a number of smaller GPs [25, 17, 2].

In this paper we present a novel approximation method called lazy Gaus-

sian process committee (LGPC) for learning from a continuous data stream.
As its name suggests, LGPC is based on a combination of multiple GPs,
which is closely related to several previous work [25, 17, 2]. Unlike previous
work, our model is updated in a “lazy” fashion in the sense that new training
examples are directly allocated to a subset of GPs without adapting their hy-
perparameters. The problem of selecting a near-optimal subset is formulated
as submodular optimization, allowing the training procedure to be carried
out efficiently. Experiments showed that LGPC has comparable accuracy
to the standard GP regression and outperforms several GP online alterna-
tives. The simplicity and the efficiency of LGPC make it more appealing in
real-time online applications.

We applied LGPC to mouse-trajectory prediction in an Internet banking
scenario. The intention was to predict user’s hand movements in real-time, so
as to offer support to security applications, such as recognizing identity theft
or an abnormal funds transfer. Thus, the model’s learning and prediction
should be sufficiently fast. In the field of psychology and cognitive science,
there has been abundant evidence that a motor dynamic of the hand can
reveal the time course of mental process [1, 23]. Moreover, several studies
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have showed that computer mouse-trajectory can afford valuable information
about the temporal dynamics of a variety of psychological process [24, 8, 7].
For instance, when moving their hand while making a decision, people may
deviate more from a straight trajectory if there is a tempting alternative,
making viable such measures as maximum deviation, curvature area, and
switches in direction. Moreover, unintentional stress might manifest less
smooth, more complex and fluctuating trajectories [4]. An online learning
technique is necessary as it allows the adaption to changes in the trajecto-
ries. The effectiveness of the online mouse-trajectory learning confirms the
applicability of our method.

The rest of the paper is organized as follows. Section 2 briefly reviews
the Gaussian process and previous work on sparse approximations. Section 3
introduces the proposed method. Experimental results are presented in Sec-
tion 4. Section 5 concludes the paper and points out some future directions.

2. Related Work and Novel Contributions

This section briefly reviews Gaussian process and previous attempts on
reducing its computational complexity. The underlying problems that moti-
vate this work are highlighted.

2.1. GP Regression

The problem of regression aims to find a function estimation from the
given data, which is usually formulated as follows: given a training set D :=
{(xn, yn)}Nn=1 of N pairs of input vectors xn and noisy scalar outputs yn, the
goal is to learn a function f transforming an input into the output given by

yn = f(xn) + ǫn,

where ǫn ∼ N (0, σ2) and σ2 is the variance of the noise. A Gaussian process

is a collection of random variables, any finite number of which have consistent
joint Gaussian distribution. Gaussian process regression (GPR) is a Bayesian
approach which assumes a GP prior over functions. As a result the observed
outputs behave according to

p(y |x1, . . . ,xN) = N (0,K),

where y := [y1, . . . , yN ]
⊤ is a vector of output values, and K is an N × N

covariance matrix; the entries are given by a covariance function, i.e. Kij :=
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k(xi,xj). In this work, we consider a frequently used covariance function
given by

k(xi,xj) := κ2 exp

(
−
1

2
(xi − xj)

⊤W(xi − xj)

)
+ σ2δij , (1)

where κ denotes the signal variance and W are the widths of the Gaussian
kernel. The last term represents an additive Gaussian noise, i.e. δij := 1 if
i = j, otherwise δij := 0. Samples from this prior are plotted for various
values of the parameters in Fig. 1.
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Figure 1: Samples drawn from a Gaussian process prior defined by the covariance function
(1). The samples are obtained using a discretization of the x-axis of 1000 equally spaced
points. The text above each plot denotes the value of κ2

, σ
2
, {W}, respectively. In this

example, the input x is one-dimensional. Hence, the parameter {W} is in fact a scalar
value, which can be absorbed into κ.

In the setting of probabilistic regression, the goal is to find a predictive
distribution of the output y∗ at a test point x∗. Under GPR, the predictive
distribution of y∗ conditional on the training set D is also Gaussian

p(y∗ | D,x∗) = N
(
k⊤
∗ K

−1y, k∗ − k⊤
∗ K

−1k∗

)
, (2)

where k∗ := [k(x∗,x1), . . . , k(x∗,xN)]
⊤ and k∗ := k(x∗,x∗). One can observe

that the training data is explicitly required at the test time in order to con-
struct the predictive distribution, which makes GP a non-parametric method.
The hyperparameters are [κ2, σ2, {W}]⊤, where {W} denotes parameters in
the width matrix W. The optimal hyperparameters for a particular data
set can be derived by maximizing the marginal likelihood function using a
gradient based optimizer. For a more detailed background on GP, readers
are referred to the textbook [19].
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It should be noted that in each iteration the computation of the likelihood
and the derivatives involves inversion of a matrix of size N×N , which requires
timeO(N3). Once the inversion is done, inference on a new test point requires
O(N) for the predictive mean and O(N2) for the predictive variance. Thus,
a simple implementation of GPR can handle problems with at most a few
thousands training examples, which prevents it from real-time applications
dealing with large amounts of data.

2.2. GP Approximations

The sparse representation of data has been studied exhaustively [11]. It
has been shown that the bulk of information provided by all training inputs
can be summarized by a small set of inputs, which is often known as induc-
ing inputs or support vectors. By assuming additional dependency about
the training data given the inducing inputs, various sparse GP approxima-
tions were derived, such as the subset of regressors [21], projected latent
variables [20] and sparse GP with pseudo-inputs [22]. A unifying view of
these sparse GP methods was presented in [18].

It should be noted that the selection of inducing inputs does leave an
imprint on the final solution. Loosely speaking, the selection can be carried
out either in a passive (e.g. random) or active fashion. An extensive range
of proposals were suggested to find a near-optimal choice for inducing in-
puts, such as posterior maximization [21], maximum information gain [20],
matching pursuit [10] and pseudo-input via continuous optimization [22]. In
particular, sparse online GP [3] was developed by combining the idea of a
sparse representation with an online algorithm, allowing the inducing inputs
(basis vectors) to be constructed in a sequential fashion.

An alternative approach for speeding up GPR is Bayesian committee ma-
chine (BCM) introduced by [25]. Loosely speaking, the original training data
is partitioned into parts, where each part is maintained by a GP. The com-
putational cost is thus significantly reduced due to much smaller number of
training examples within each GP. BCM provides a principled approach to
combining Bayesian estimators trained on different data sets for the predic-
tion. Inspired by this idea, some other work have been focused on combining
multiple GPs for regression [17, 2].

2.3. Novel Contributions

In the online setting, a straightforward application of the approaches men-
tioned above is impeded by two obstacles. First, it is inefficient to optimize
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hyperparameters every time a new training example is presented. Second,
adding new training examples to the model may cause non-smooth fluctu-
ations in the marginal likelihood function and its gradients, meaning that
a smooth convergence is not guaranteed [20]. Although several heuristics
can be adapted to alleviate this problem, there is no reliable way of learning
hyperparameters. Moreover, as training examples are presented sequentially
rather than in batch, selecting inducing inputs from a data stream in a far-
sighted fashion becomes extremely challenging. Furthermore, the inducing
inputs selection and the hyperparameters estimation are somewhat under-
mined by each other [22], which may adversely affect the quality and the
efficiency of online regression.

3. LGPC for Online Regression

The basic idea of our approach is straightforward. Instead of training a
single GP using all the training data, we partition the data and allocate it to
a committee consisted of Q independent GPs with different hyperparameters.
That is, each GP maintains a subset of the training data, which is denoted
as D1, . . . ,DQ respectively, where Dq := {(xt, yt)}Tt=1 and T is the maximum
number of training examples of each GP, which can be set in accordance with
the available computational power. Intuitively, each GP in the committee
corresponds to an interpretation of the relationship between input and out-
put. For predicting the output y∗ of a query point x∗, the outputs from all
GPs are combined together. Under the independence assumption, we obtain
p(y1, . . . ,yQ | D) =

∏Q

q=1
p(yq | Dq). Thus, the predictive distribution can be

approximated as

p̂(y∗ | D,x∗) = c×

∏Q

q=1
p(y∗ | Dq,x∗)

[p(y∗)]
Q−1

, (3)

where c is a normalization constant. The posterior predictive probability
densities are simply multiplied. Note that since we multiply posterior proba-
bility densities, we have to divide by the priors Q−1 times. Readers may find
out that our model has a similar predictive distribution as in BCM. However,
as we shall see in the next section, their training procedures are completely
different.

This section describes LGPC in three parts, namely the allocation of
new training examples, the incremental update and the predictions of query
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points. Note that all hyperparameters of LGPC are constants during online
learning.

3.1. Allocation of New Training Examples

Denote all GPs in the committee as Q := {1, . . . , Q}. Given a new
training example (xN+1, yN+1), we select a subsetA ⊆ Q and allocate the new

example to their data collection, respectively. Denote D〈N〉
q as the training

examples allocated to the qth GP at time N , the update rule is formalized as

D〈N+1 | A〉
q :=

{
D〈N〉

q ∪ {(xN+1, yN+1)} if q ∈ A;

D〈N〉
q otherwise.

On the one hand, if A contains only one element, meaning that only one
GP is updated each time, then the information provided by the new training
example may not be well utilized. On the other hand, if we let A := Q, then
all GPs must update their corresponding Gram matrix to include the new
training example (no matter whether such inclusion will contribute to the
prediction of the committee or not), which can degrade the efficiency and
the quality of the prediction. Thus, we need an active selection policy to
choose at most S GPs from the committee, such that their data inclusion
can yield the maximal improvement for prediction.

Clearly it can make sense to select which GPs are taken into A by opti-
mizing some criterion. The idea here is to maximize the likelihood of LGPC
on a small subset of training examples. To see this we introduce a refer-

ence set R, in which both inputs XR and outputs yR are observed. The
reference set can be constructed, for instance, by subsampling all previous
training data {D〈N〉

q }
Q
q=1 with the addition of the current training example

(xN+1, yN+1). Note that the terms in the numerator and the denomination of
(3) are all Gaussian distributions over y∗. Thus, the predictive distribution
for yR at time N can be approximated by a Gaussian distribution with mean
and covariance as follows

E
〈N〉
p̂ (yR) = C

〈N〉
p̂ (yR)

∑

q∈Q

(
C(yR | D

〈N〉
q ,XR)

−1
E(yR | D

〈N〉
q ,XR)

)
, (4)

C
〈N〉
p̂ (yR) =

(
− (Q− 1)Σ−1

RR +
∑

q∈Q

C(yR | D
〈N〉
q ,XR)

−1

)−1

, (5)

where ΣRR is the covariance matrix evaluated at XR. The predictive mean
and covariance of each GP, i.e. E(yR | D

〈N〉
q ,XR) and C(yR | D

〈N〉
q ,XR), can
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be obtained from (2). Note that as yR is known, the log probability of yR

under the current model can be evaluated by substituting (4) and (5) into
the following

L
〈N〉
R :=−

|R|

2
log(2π) +

1

2
log

∣∣∣C〈N〉
p̂ (yR)

−1

∣∣∣
−

1

2

(
yR − E

〈N〉
p̂ (yR)

)⊤

C
〈N〉
p̂ (yR)

−1

(
yR − E

〈N〉
p̂ (yR)

)
,

where |R| represents the number of references points in R. When R is

arbitrarily selected and sufficiently large, one can consider L
〈N〉
R as a proxy

for the likelihood of training examples for LGPC. Hence, we hereinafter call
LR the log pseudo-likelihood.

As a consequence, the problem of the optimal selection A∗ at time N +1
can be formulated as

A∗ := arg max
A⊆Q

L
〈N+1 | A〉
R − L

〈N〉
R , subject to |A| ≤ S,

which is unfortunately a combinatorial problem and cannot be solved ef-
ficiently. However, it is worth to highlight that the increment of pseudo-
likelihood L

〈N+1 | A〉
R − L

〈N〉
R satisfies the diminishing returns behavior. That

is, adding a new GP to the selection A increases the pseudo-likelihood more,
if we have selected few GPs; and less, if we have already selected many GPs.
This formalism can be formalized using the combinatorial concept of sub-
modularity [16]. Specifically, let F (A) := L

〈N+1 | A〉
R − L

〈N〉
R , the submodular

characteristic of F indicates that for all A ⊆ B ⊆ Q and q ∈ Q \ B it holds
that F (A∪ {q})− F (A) ≥ F (B ∪ {q})− F (B).

Interest of optimizing a submodular function has grown in the machine
learning community recently [12, 14, 13]. In practice, heuristics such as
greedy selection are often used. The greedy algorithm starts with the empty
set, and iteratively adds the element q∗ := argmaxq∈Q\A F (A ∪ {q}), until
S elements have been selected. A fundamental result by [16] stated that
for submodular functions, the greedy algorithm achieves at least a constant
fraction (1 − 1/e) of the objective value obtained by the optimal solution.
Moreover, no polynomial time algorithm can provide a better approximation
guarantee unless P = NP [6].

Note that evaluating F (A∪ {q}) can be expensive as it is required to re-
compute (4) and (5) for all q ∈ Q in each iteration. In fact, such computation
is unnecessary due to the submodularity of F [15]. Define themarginal benefit
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Algorithm 1: Greedy subset selection for LGPC.

Input : desired size of selection S (≥ 2)
Output: greedy selection A

1 Initialization A ← Ø, J ← {1, . . . , Q};
2 ∀j ∈ J : ∆j ← F (A ∪ {j})− F (A);
3 j∗ ← argmaxj∈J ∆j ;
4 A ← A∪ {j∗}, J ← J \ {j∗};
5 for s← 2 to S do

6 repeat

7 j∗ ← argmaxj∈J ∆j ;
8 ∆j∗ ← F (A∪ {j∗})− F (A);
9 if ∀j ∈ J \ {j∗} : ∆j∗ > ∆j then

10 A ← A∪ {j∗}, J ← J \ {j∗};

11 until |A| = s;

of q as ∆q := F (A∪{q})−F (A), the submodularity indicates that ∆q never
increases over iterations. Based on this observation, our greedy selection
scheme is given in Algorithm 1. The algorithm starts with the set A being
empty, and J containing the indices of all GPs. In the first iteration, the
GP with maximal ∆ is selected from J and added to A. This is achieved
by evaluating the marginal benefit for all GPs in the committee. An ordered
list of {∆j}j∈J is maintained. From the second iteration, only the top GP
in this ordered list will be evaluated. If the new marginal benefit of that GP
stays on top, then we add it to A. Otherwise, the list of marginal benefits is
re-sorted and, subsequently, the new top GP is evaluated.

In addition to Algorithm 1, it is also possible to solve this problem using
hybrid genetic algorithms and, in particular, random permutation genera-
tors [5]. These methods may be configured to search for a single subset A,
or an ensemble of subsets Ai which all keep the value of F (A∪ {q})− F (A)
at a reasonable level, and on other hand, they are minimal in size and have
minimal pairwise intersections. Although the mathematical background of
those methods seems to be different, it would be interesting to look at them
for more general comparison as a future work.
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3.2. Incremental Update of LGPC

Once a set of GPs is selected by Algorithm 1, the problem turns to up-
dating these GPs for the data inclusion in an incremental fashion. Although
the update of inputs X and outputs y can be done straightforwardly, the up-
date of a covariance matrix K and its inverse J := K−1 is more complicated.
Specifically, the effect of a new point xN+1 on K and J can be expressed as

K〈N+1〉 :=

[
K〈N〉 u⊤

u v

]
, J〈N+1〉 :=

[
J〈N〉 + 1

µ
gg⊤ g

g⊤ µ

]
,

with u := [k(xN+1,x1), . . . , k(xN+1,xN)]
⊤ and v := k(xN+1,xN+1). Follow-

ing the partitioned inversion matrix equations we have

g := −µJ〈N〉u, µ :=
(
v − u⊤J〈N〉u

)−1
.

In practice, Cholesky factorization is often used so that L⊤L := K, which
leads to a more efficient and accurate solution for frequently occuring terms
such as x⊤K−1x = ‖L−1x‖2 and log |K| = 2

(
1⊤ log(diag (L))

)
. The lower

triangular matrix L can be also updated incrementally such that

L〈N+1〉 :=

[
L〈N〉 0

l
⊤ η

]
,

where l can be solved by L〈N〉l = u, and subuently, η :=
√

v − ‖l‖2.
Further notice that the model may deal with an endless stream of data

during online learning. Thus, we have to limit the number of training ex-
amples maintained by each GP and delete old training examples when nec-
essary. Let m be the index of training example being deleted. Construct
P := I − (δm − δT+1)(δm − δT+1)

⊤, as a (T + 1)-dimensional permutation
matrix, where δm is a (T + 1)-dimensional zero vector with one on the mth

dimension. When a new point comes in, it is first appended to K〈N+1〉.
Then, the deletion of the mth example can be performed efficiently using[
PK〈N+1〉P

]
⇑
, where [·]⇑ represents shrinking a (T + 1)-dimensional matrix

or vector to a T -dimensional one by removing the last row and column of it.
Thus, the non-increasing update equation of J is given by

J〈N+1〉 :=
[
PJ〈N+1〉P

]
⇑
−

1

r
s⊤s,

where s := [[k(xm,x1), . . . , k(xm,xN+1)]P]⇑ and r := k(xm,xm).
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So far we have not said which training example should be deleted. One
simple method is to choose it randomly or to remove the oldest training
example over time. Alternatively, one can remove the point that yields max-
imal mutual information with the new point. In this work, we follow the
score measure introduced by [3]. Specifically, for each point i in set Dq the
score is given by ξt :=

αt

J
〈N+1〉
tt

, where αt is the tth element of J〈N+1〉y. If a

deletion is needed for the qth GP, then the training example with minimal ξ
will be removed from Dq. The scores are computationally cheap as they can
be calculated in linear time. Although there may exist more sophisticated
selection schemes, they usually consume more computational time and hence
are not considered in this work.

3.3. Predictions of Query Points

Given a query point x∗, the predictive mean and variance can be cal-
culated by evaluating (4) and (5) straightforwardly. One can observe that
the way of combining predictions in (4) automatically assigns less weight
(through the inverse predictive variance) to those GPs that are uncertain
about their predictions. The time complexity is O(QT ) for predicting the
mean and variance of a test point.

For the sake of efficiency and accuracy, it is reasonable to only invoke
nearby GPs in a neighborhood of x∗ for the prediction. The key observation
is that k(x∗,x) depends merely on the constant σ if x∗ is far away from x.
As σ is randomly initialized in LGPC, a poor prediction could be given by
the qth GP when x∗ is far away from all points in the set Dq. The search of
neighboring GPs can be performed by evaluating 1

|Dq|

∑
x∈Dq

k(x∗,x) for all

{Dq}
Q
q=1 and, subsequently, selecting those having largest values.

4. Experimental Results

Two sets of experiments were carried out to validate our algorithm. First,
we compared the accuracy and the efficiency of LGPC with the standard
GPR and state-of-the-art online regression methods. Second, we investi-
gated several factors that affect the performance of LGPC in order to gain
more insights of it. An application to the mouse-trajectory prediction is
demonstrated at the end.

The experiments were conducted on six large data sets downloaded from
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the Internet 1. On each data set, we linearly rescaled into the range of [0, 1]
and randomly held out half of the data for training; the remaining was used
as a test set. Each experiment was repeated 10 times.

Five baseline methods were employed for comparison. They were stan-
dard GP regression (GPR), sparse GP using pseudo-inputs (SGPP) [22]2,
local GP regression (LoGP) [17]3, Bayesian committee machine (BCM) [25]
and sparse online GP regression (SOGP) [3]4. Note that GPR and SGPP are
offline algorithms, they are presented here to show the performance when the
whole training data is given beforehand. A Gaussian kernel function with
white noise was used as the covariance function for all methods, which was
obtained by setting W in (1) as the identity matrix. The maximum number
of inducing inputs in SGPP and SOGP was 50. The threshold for creating a
new local model in LoGP was 0.5. The size of the committee was 20 for BCM
and LGPC, in which each GP maintained at most 100 training examples. For
BCM and LGPC, the first 20 training examples were sequentially assigned
to each member for initialization. The reference set of LGPC had a size of 3,
which consisted of the current training example and two examples randomly
sampled from the aforetime data. The number of selected GPs in LGPC for
data inclusion was 5 (i.e. S := 5 in Algorithm 1). Moreover, three variations
of BCM were employed in the experiment. BCMo denotes that each time
only one GP is randomly selected for data inclusion; BCMs represents ran-
domly selecting a subset with a size of 5, which corresponds to a randomized
counterpart of LGPC; and BCMa represents selecting all GPs. For predicting
test inputs, all GPs in the committee of BCM and LGPC were invoked. The
hyperparameters were randomly initialized for all methods. The conjugate
gradient method was employed to optimize the hyperparameters for GPR,
SGPP, SOGP and LoGP. For SOGP, an EM algorithm with 10 cycles was
built for jointly optimizing the posterior process and the hyperparameters.

1delta: 7, 129× 6, http://www.dcc.fc.up.pt/~ltorgo/Regression/;
bank: 8, 192× 8, http://www.cs.toronto.edu/~delve/;
cpuact: 8, 192× 12, http://www.cs.toronto.edu/~delve/;
elevator: 8, 752× 17, http://www.dcc.fc.up.pt/~ltorgo/Regression/;
houses: 20, 640× 8, http://lib.stat.cmu.edu/datasets/;
sarcos: 44, 484× 21, http://www.gaussianprocess.org/gpml/data/.

2http://www.cs.man.ac.uk/~neill/gp/
3http://www.ias.informatik.tu-darmstadt.de/Member/DuyNguyen-Tuong
4http://www.cs.ubbcluj.ro/~csatol/
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4.1. Comparison of Predictive Accuracy

The comparison of predictive accuracy between different GP methods is
summarized in Table 1, where the root mean square error was used as the
evaluation metric. It is evident from the results that, LGPC gave a consid-
erably lower test error than LoGP, BCM and SGPP. In particular, LGPC
showed a significant improvement over all BCM variants on the majority
data sets, which indicates the effectiveness of our subset selection strategy.
Empirically, we found that good performance could have been achieved af-
ter learning from first few thousands examples. After that, the accuracy
of LGPC did not change significantly. On delta, cpuact and houses, the
performance of LGPC was comparable to SOGP. In fact, the performance
of LGPC can be further improved by allowing each GP to maintain more
training examples, as it is shown in the third experiment.

Table 1: LGPC versus baseline methods. The root mean square error on different test
sets were measured. Results were averaged over ten runs. Smaller value indicates better
performance.

Model delt bank cpua elev hous sarc

LGPC 0.041 0.084 0.072 0.053 0.157 0.032
LoGP 0.065 0.188 0.219 0.107 0.232 0.089
BCMo 0.044 0.113 0.115 0.066 0.164 0.070
BCMs 0.043 0.108 0.114 0.069 0.180 0.073
BCMa 0.045 0.122 0.119 0.083 0.203 0.077
SOGP 0.040 0.047 0.074 0.038 0.143 0.023
GPR 0.039 0.041 0.030 0.031 0.115 0.016
SGPP 0.045 0.061 0.079 0.065 0.161 0.095

4.2. Comparison of Computation Speed

The comparison of training and prediction speed is shown in Fig. 2. Differ-
ent online methods were trained (tested) on houses data set with increasing
training (testing) examples, i.e. 500, 1, 000, 2, 000, 4, 000 and 8, 000 data
points, respectively. The setup of each method was same as in the last ex-
periment. For the sake of fair comparison, the update of kernel matrix for
LGPC, LoGP and BCM was implemented in the same manner as described
in Section 3.2.

As can be seen in Fig. 2, in both training and prediction phrases, LGPC
showed a substantial reduction of time comparing to GPR and LoGP. In
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particular, LGPC took less time for learning 8, 000 points (210s) than SGPP
(240s) and SOGP (340s). On the other hand, SGPP and SOGP were found
to be extremely efficient in the prediction, as their time cost only increased at
a very low pace with respect to the number of test points. This is due to the
fact that the prediction of SGPP and SOGP involves only a small covariance
matrix based on 50 inducing inputs, whereas LGPC invokes all GPs in the
committee for prediction. Nonetheless, it is possible to speed up LGPC by
invoking only the nearest GP for the prediction as aforementioned. In short,
LGPC is a more appropriate choice than SOGP in a real-time application
which requires fast training.

One may notice that LGPC took more training time than BCMs and
its speed advantages over BCMa was not dramatic, which is slightly dis-
appointing. This is attributed to the fact that, although LGPC saves the
computational resources by limiting the number of GPs for data inclusion,
it spends extra computational time on selecting a near-optimal subset with
Algorithm 1. The prediction complexity of LGPC, BCMo, BCMs and BCMa

was virtually same. Nonetheless, it should be noted that LGPC outperformed
all BCM variants significantly on houses in terms of predictive accuracy as
detailed in Table 1, which makes LGPC overall more preferable than BCM.

4.3. Exploration of Model Parameters

In order for LGPC to be a practical tool in real-world applications, it
is necessary to make decisions about the details of its specification. Fortu-
nately, there are not many free parameters in LGPC, as all hyperparameters
are randomly initialized and are fixed during the learning process5. Our ex-
ploration focused on three parameters that mainly govern the performance of
LGPC. Namely, the committee size Q, the maximum number of maintained
training points T and the size S of the selected subset for data inclusion.

The performance of LGPC with respect to different sizes of the committee
is summarized in Table 2(a), where S := 5 and T := 100. On delta, bank
and cpuact, the predictive accuracy reached its peak when the size of the
committee was around 20. After that, the performance dropped slightly. On
larger data sets such as houses and sarcos the test error had a steady decline

5We did try few heuristics for initializing the hyperparameters, such as initializing 20
Gaussian kernels with different widths (e.g. 2−9

, . . . , 29, 210) and the same noise level; or
setting W in (1) for each GP as a random block matrix. However, such attempts did not
yield better predictive accuracy than the random initialization.
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Figure 2: Time cost in second (averaged over 10 runs) required for training and predicting,
respectively. In each run, a training set and a test set were randomly sampled from houses

data set and the time cost was measured respectively. The training and prediction time of
8, 000 data points required for GPR was 1100s and 15s, respectively. Note that prediction
time of LGPC can be reduced to 0.02s if only the nearest GP is invoked for predicting a
test point.

as Q increasing. This indicates that it suffices to employ a small committee
for learning a small amount of data. For a large data set increasing the size of
the committee provides more capability to account for the complex pattern,
which generally leads to higher predictive accuracy.

Table 2(b) summarizes the test results of LGPC with respect to different
settings of T , where S := 5 and Q := 20. As expected, one can improve
the predictive accuracy significantly by allowing each GP to maintain more
training examples. Moreover, when T := 200 it was observed that the high
accuracy was achieved much earlier than T := 50; and the performance was
often more robust afterwards.

Finally, to study the performance with respect to different sizes of the
selected subset, we fixed T := 100, Q := 20 and trained LGPC with S :=
2, 4, 6, 8 and 10, respectively. It was found that on delta and sarcos the pre-
dictive accuracy was not sensitive to the size of selected subset. On cpuact,
elevator and houses, selecting more than two GPs slightly degraded the
performance. The optimal size for bank was 6. In short, it seems that the
optimal value of S varies with data sets.
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Table 2: The root mean square error of LGPC on different test sets. Results were averaged
over ten runs. Smaller value indicates better performance.

(a) Predictive error w.r.t. the size of the committee of LGPC.

Q delt bank cpua elev hous sarc

5 0.043 0.093 0.087 0.065 0.171 0.034
10 0.042 0.102 0.079 0.056 0.167 0.033
15 0.041 0.085 0.075 0.057 0.161 0.034
20 0.041 0.084 0.072 0.053 0.157 0.033
25 0.041 0.076 0.080 0.053 0.156 0.032
30 0.041 0.085 0.095 0.052 0.155 0.032

(b) Predictive error w.r.t. maximum number of examples main-
tained by each GP member.

T delt bank cpua elev hous sarc

50 0.042 0.114 0.098 0.072 0.172 0.040
100 0.041 0.084 0.072 0.053 0.157 0.032
150 0.040 0.068 0.057 0.040 0.152 0.028
200 0.040 0.054 0.050 0.039 0.146 0.022

4.4. Mouse-Trajectory Prediction

The mouse-trajectories of continuous motor movements provide a way of
measuring the ongoing cognitive processes that lead to the participants final
choice. A main advantage of modeling trajectories with Gaussian process
regression over the various summary statistics used previously [9] (e.g. max-
imum deviation, area under curve) is that less information is thrown away.
The posterior density of a GP shows a normatively correct summary of the
data.

We applied LGPC for learning mouse-trajectory of different users in an
Internet banking scenario. To collect the data, we developed a website for
simulating an environment, in which participants were asked to transfer funds
to a dummy account. A complete procedure was composed of five interfaces,
i.e. login, account overview, transaction details, TAN authentication and
confirmation. Ten participants were involved and each with three trials; the
input information was same for all trials. A Javascript code was developed
for tracking mouse coordinates on every onmousemove event. The trajectories
of the first two trials (ca. 2700 points/user) were used for training models.
The goal was to predict the trajectory of the last trial (ca. 1000 points/user).

16



U1

LGPC

U2

LGPC

U3

LGPC

U1

SOGP

U2

SOGP

U3

SOGP

U1

GPR

U2

GPR

U3

GPR

(a) Mouse-trajectories on “transaction details”

U1

LGPC

U2

LGPC

U3

LGPC

U1

SOGP

U2

SOGP

U3

SOGP

U1

GPR

U2

GPR

U3

GPR

(b) Mouse-trajectories on “TAN authentication”

Figure 3: The predictions of three users’ mouse-trajectories on two interfaces. Each column
represents a user. The gray curve with � denotes a user’s trajectory in the third trial.
The model’s prediction is illustrated by the color curve with ⋆, whose head is blue and tail
is red.
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The predicted trajectories of three users using LGPC, SOGP and offline
GPR are visualized in Fig. 3. It was observed that users behaved differ-
ently even when they were performing the same task. For instance, the first
user used the tab key moves the cursor and entered the TAN code with the
numpad, resulting a short and simple mouse-trajectory. On the other hand,
the third user entered the TAN code using a virtual keyboard on the web
page, which made the trajectory sway horizontally. By learning from the
first two trials, reasonable predictions of the third trial were obtained from
all methods. However, when the interface contained many elements and the
trajectory became more complicated, the offline GPR gave noisy predictions
as depicted in Fig. 3(a). It can be seen that LGPC performed as good as the
state-of-the-art SOGP in learning users’ trajectories.

With a new training point arriving about every 10ms (less than one
minute of running time will result in thousands of data points), LGPC is
a more preferable method due to its fast learning speed. Efficient trajectory
prediction would be beneficial in security applications, such as distinguishing
between individuals and early warning of identity theft.

5. Conclusions

GP faces a low-efficiency problem when it is applied to real-time online
applications. This work has proposed a novel method for reducing the com-
putational demand of GP regression. It consists of multiple GPs where each
maintains only a small set of training examples. Each time a subset of GPs
is selected for including newly arrived training examples. The selection is
performed by optimizing a submodular function. Unlike previous work, our
model removes the need for parameter-fitting and requires little tuning ef-
forts. An improvement of accuracy and efficiency over existing online GP
methods has been demonstrated in the experiment. In particular, as a mod-
ified version of Bayesian committee machine, we have showed that updating
a chosen subset of GPs is more effective than updating the whole committee,
which leads to better predictive accuracy. As demonstrated in the task of
mouse-trajectory prediction, LGPC can be applied to a wide range of real-
time applications, such as learning motor dynamics and inferring temporal
dynamics of mental phenomena.

An important question for future studies is to determine the optimal size
of the committee. One possible way is to expand or shrink the committee
size during the online learning. In addition, more effective strategies for
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initializing the hyperparameters remain to be determined. Furthermore, it
should be interesting to infringe the independence between GP members for
a further improvement on the accuracy.
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