
Phase Transition and the ComputationalComplexity of Generating r-ontiguous DetetorsThomas StiborDepartment of Computer SieneDarmstadt University of Tehnologystibor�se.informatik.tu-darmstadt.deAbstrat. The problem of generating r-ontiguous detetors in nega-tive seletion an be transformed in the problem of �nding assignmentsets for a Boolean formula in k-CNF. Knowing this ruial fat enablesus to explore the omputational omplexity and the feasibility of �nd-ing detetors with respet to the number of self bit strings |S|, the bitstring length l and mathing length r. It turns out that �nding detetorsis hardest in the phase transition region, whih is haraterized by er-tain ombinations of parameters |S|, l and r. This insight is derived byinvestigating the r-ontiguous mathing probability in a random searhapproah and by using the equivalent k-CNF problem formulation.1 IntrodutionTheoretial immunologists have proposed the r-ontiguous mathing funtionto abstrat the a�nity between an antibody and an antigen in immune systemmodels [1℄. In the �eld of arti�ial immune systems, the r-ontiguous mathingfuntion is applied as a mathing rule for hange detetion [2℄ or more generallyfor anomaly detetion problems. In these domains, antibodies (alled detetors)and antigens are abstrated as bit strings and the r-ontiguous mathing ruleis applied for deteting (anomalous) antigens. More spei�ally, in this immuneinspired anomaly detetion approah, the problem is to �nd detetors, suh thatno detetor math with any self antigen. This form of detetor generation forthe omplementary spae is alled negative seletion [3℄.In reent years, many attempts were made (see [4,5℄ for an overview) togenerate detetors e�iently, i.e. in polynomial time and with polynomial spaeoupation with regard to the mathing length r and number of self antigens
|S|. All attempts in designing e�ient algorithms for generating r-ontiguousdetetors were limited suessful. The proposed algorithms either have a time ora spae omplexity whih is exponential1 in the mathing length r, i.e. O(2r) orin the number of self elements |S|, i.e. O(e|S|). Stibor et al. [6℄ proved that the1 There exists a linear time detetor generating algorithm [2℄, however this algorithmstill requiresO(2r) time and spae oupation. It is termed linear, beause it runs lin-ear in |S| under the assumption that |S| = O(2r). For real-world problems however,the assumption |S| ≪ 2r is justi�able.



problem of generating r-ontiguous detetors an be transformed in a k-CNFsatis�ability problem and argued that at least Ω(2r) bit string evaluations arerequired to �nd all r-ontiguous detetors.In this paper we go one step further and explore the omputational om-plexity of generating detetors with the Davis-Logemann-Loveland algorithm.Furthermore, we rigorously analyze, when detetors an be generated with re-spet to the number of self bit strings |S|, the bit string length l and mathinglength r. It will turn out that generating r-ontiguous detetors is omputation-ally not equally �hard�. More spei�ally, it is relatively heap omputationally,to verify that no detetors an be generated or that a large number of detetorsan be generated. However, there also exists a phase transition region whih isharaterized by ertain ombinations of parameters |S|, l and r where �ndingdetetors is hardest. This insight will be derived from two diretions, namelyby investigating the r-ontiguous mathing probability in a random searh ap-proah and by using the problem transformation of generating detetors into the
k-CNF satis�ability problem.2 Bit String Mathing Rule and Generating DetetorsRandomlyLet U be a universe whih ontains all 2l distint bit strings of length l.De�nition 1. A bit string b ∈ U with b = b1b2 . . . bl and detetor d ∈ U with
d = d1d2 . . . dl, math with r-ontiguous rule, if a position p exists where bi = difor i = p, . . . , p + r − 1 and p ≤ l − r + 1.Loosely speaking, two bit strings, with the same length, math if at least rontiguous bits are idential. In the remaining setions the expression �detetors�will refer to r-ontiguous detetors. Sets are denoted in alligraphi letters, e.g.
S and |S| denotes the ardinality. Throughout the paper, we will assume that Sontains pairwise distint bit strings randomly drawn from U .2.1 Randomly Generating Detetors in Negative SeletionGiven U and its partition into distint subsets S and N . In negative sele-tion one has to �nd detetors suh that no detetor mathes (see Def. 1) withany bit string from S. Detetors whih satisfy this property math with �not neessarily all � bit strings from the omplementary spae U \ S. Algo-rithm (1) is a straightforward random searh to generate, i.e. to �nd dete-tors. A bit string d is randomly sampled from U and mathed against all bitstrings in S. When no r-ontiguous math ours, d is added to the detetorset D. This random sampling is repeated until a ertain number of detetorsis found. It is obvious that this straightforward random searh is not an e�-ient searh tehnique. However, a thorough probabilisti analysis of algorithm(1) reveals valuable insights, whether detetors an or an not be generated.



Algorithm 1: Random searh for detetors in negative seletioninput : l, r, t ∈ N where 1 ≤ r ≤ l and S ⊂ Uoutput: Set D ⊂ U of r-ontiguous detetorsbegin1
D := ∅2 while |D| < t do3 Sample randomly a bit string d ∈ U4 if d does not math with any bit string of S then5

D := D ∪ {d}6 end72.2 Probability of Mathing in Random Detetor GenerationThe probability that two randomly drawn bit strings from U are not mathingwith the r-ontiguous rule an be determined with approahes from probabilitytheory, namely reurrent events and renewal theory [7℄. In Feller's textbook [7℄on probability theory an equivalent2 problem is formulated as follows:�A sequene of n letters S and F ontains as many S-runs of length ras there are non-overlapping uninterrupted bloks ontaining exatly rletters S eah�.Given a Bernoulli trial with outomes S (suess) and F (failure), the probabilityof no suess running of length r in l trials is aording to Feller
PWF =

1 − px

(r + 1 − rx)q
·

1

xl+1
(1)where

p = q =
1

2
and x = 1 + qpr + (r + 1)(qpr)2 + . . .A simpler approximation � however only valid for r ≥ l/2 � is provided byPerus et al. [1℄:

PJP = 1 − 2−r [(l − r)/2 + 1] . (2)From (1) one an straightforwardly onlude that the probability of �nding tdetetors when given l, r and |S| results in:Prob[�nd t detetors] = t−1 · (PWF )|S|. (3)2 The Link between reurrent events, renewal theory and the r-ontiguous mathingrule was disovered originally by Perus et al. [1℄ and redisovered by Ranang [8℄.Perus et al. presented in [1℄ the approximation (2) whih is only valid for r ≥ l/2,but mentioned the full approximation for 1 ≤ r ≤ l indiretly by mentioning thename de Moivre and iting Uspensky's textbook (see pp. 77 in [9℄).



Moreover, from (3) one an onlude how often on average step 4 in algorithm(1) is exeuted when given t, or in other words how many bit strings one has tosample before �nding t̂ detetors.
t̂ =

1

t−1 · P
|S|
WF

. (4)Result (4) is equivalent to an earlier result on negative seletion [3℄, when PWFis replaed by PJP .
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(a) Mathing probability for �nding a de-tetor randomly for l := 24, r := [1 . . . 24]and |S| := {1, 10, 100, 1000, 10000}.
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(b) If r lies within interval i1, then withhigh probability no detetors will befound, whereas if r lies within interval
i3, then with high probability, detetorswill be found. There also exists an interval
i2 where the probability rapidly hangesfrom 0 to 1.Fig. 1. Coherene between the probability of �nding a detetor randomly andthe parameters l, r and |S|. There exists a sharp transition boundary where theprobability rapidly hanges from 0 to 1.2.3 Probability Transition in r-ontiguous MathingKnowing the probability PWF enables us to investigate the ombinations ofparameters |S|, l and r where, with high probability detetors an be generated(i.e. exist) or with high probability an not be generated. The graphs in �gure 1show the probability for �nding a detetor for �xed l and variable r and |S|aording to term (3). One an see, that the larger the ardinality of S, thelarger the interval for r where the resulting probability is nearly 0 to �nd adetetor, or in other words where no detetors exist. On the other hand, the



smaller the ardinality of S, the larger the interval for r where the resultingprobability is nearly 1 to �nd a detetor. In �gure 1(b) the same graph, but onlyfor |S| = 1000 is highlighted. One an see in detail that three di�erent intervals
(i1, i2, i3) exist. One an either �nd with high probability a detetor in interval
i1, or �nd with high probability no detetor in interval i3. Moreover there existsa third interval i2 where the probability rapidly hanges from 0 to 1. For thesake of onformity with the subsequent setions, we denote the interval i2 asphase transition region. We will later see, that �nding detetors in this region,whih is haraterized by ertain ombinations of parametes |S|, l, r is hardestfrom the perspetive of omputationally omplexity.To summarize this setion, if parameters |S|, l and r are hosen suh thatterm (3) results in a value very lose to 0, then in the worst ase no detetorsan be generated, never mind whih algorithms, i.e. searh tehniques are appliedto generate detetors, beause there exist no detetors. On the other hand, ifterm (3) is lose to 1, then a large number of detetors exist.2.4 Coherene of Mathing Length r, Self Set S and RandomDetetor SearhIn the arti�ial immune system ommunity seems to exist some onfusion re-garding the time omplexity of algorithm (1). More spei�ally, authors in [3℄argued that generating detetors when applying the random searh approah anbe performed linearly in |S|. Their argument is based on the observation that t̂in (4) is minimized by hoosing 1− PJP ≈ 1/|S|. In other words, the number ofbit strings one has to sample before �nding t detetors is linear proportionallyto |S|, when using algorithm (1). This observation implies that the mathingthreshold r purely depends on the ardinality of S when l is �xed. To be morepreise, suppose r ≥ l/2, then

2−r [(l − r)/2 + 1] ≈ |S|−1 ⇐⇒ r ≈ l + 2 −
W (8 ln(2)2l/|S|)

ln(2)
(5)where W (x) is the Lambert W -funtion whih an be expressed as the seriesexpansion

W (x) =

∞∑

k=1

(−1)k−1kk−2

(k − 1)!
xk. (6)Pratially speaking, one |S| and l are �xed, the mathing length r is suhhosen that it will fall in interval i3 (see Fig. 1(b)) and onsequently this impliesthat a large number of detetors an be generated.With regards to anomaly detetion problems, it is known [10,11,12℄ that the

r-ontiguous mathing rule is a positional biased detetion rule. That meansthat the value of r is inextriably linked to the underlying data being analyzed.The assumption 1 − PJP ≈ 1/|S| however, implies that r grows with |S| (seeterm (5)), and does not onsider the positional bias. On the other side, if l and r



are �xed3 and |S| is onsidered as the variable parameter then t̂ = O(e|S|), thatis, r will lie within interval i1 for some large |S| and this onsequently impliesthat a random searh for detetors results in an exponential time omplexity �when detetors exist.2.5 Average Number of Detetors and HolesFor the sake of ompleteness, we present results on the average number of de-tetors that an be generated and the resulting holes. The results are straight-forward onlusions from the previous setion 2.2.Reall, algorithm (1) fails to �nd any detetor when a ertain parameterombination of S, l and r exists. More spei�ally, the universe U is not onlyomposed of sets S,D and N , but also of set H. Reall, the set N ontains allbit strings whih are detetable by the detetors from D and hene D ⊂ N . Theset H, termed hole set ontains all bit strings whih are not detetable by anydetetor, however, H does not ontain any bit strings from S, i.e. H∩S = ∅ andhene, |H| is diretly linked with interval i1 (see Fig.1(b)). More spei�ally, ifa parameter ombination of l, r and S is hosen suh that term (3) is very loseto 0, then |N | ≪ |H| or in the extreme ase |N | = 0, i.e. the universe U is onlyomposed of sets S and H.Knowing this oherene between term (3) and the universe omposition, theaverage number of detetors that an be generated results in
E[|D|] = 2l · (PWF )|S|. (7)As the universe is omposed of U = S ∪ N ∪ H when applying the negativeseletion, the number of holes results in
|H| = |U| − |N | − |S| (8)where

E[|N |] = 2l − 2l · (PWF )E[|D|]

︸ ︷︷ ︸Number of bit stringsnot deteted by E[|D|]detetors (9)
and hene the average number of holes results in

E[|H|] = 2l · (PWF )E[|D|] − |S|. (10)3 Link between r-ontiguous Detetors and k-CNFSatis�abilityStibor et al. [6℄ proved that the problem of generating detetors in negative se-letion an be transformed in an equivalent problem of �nding assignment sets3 To apture the semantial representation of the data being analyzed.



for a Boolean formula in k-CNF. Satisfying a Boolean formula in k-CNF is aninstane of the satis�ability problem [13℄, where one has to deide if there issome assignment of true and false values that will make a Boolean formula inonjuntive normal form true. For the sake of larity, we summarize the trans-formation steps presented in [6℄.Let b ∈ {0, 1} and L(b) a mapping de�ned as:
L(b) →

{
x if b = 0
x otherwisewhere x, x are literals. Moreover, let k, l ∈ N, where k ≤ l and s ∈ U , where s[i]denotes the bit at position i of bit string s. A mapping from bit string s into the

l-k-CNF4 is de�ned as follows:
C(s, k) → (L(s[1]) ∨ L(s[2]) ∨ . . . ∨ L(s[k])) ∧

(L(s[2]) ∨ L(s[3]) ∨ . . . ∨ L(s[k + 1])) ∧...
(L(s[l − k + 1]) ∨ . . . ∨ L(s[l])) .The resulting Boolean formula is onstruted by an AND-ombination of all bitstrings in S, i.e.

φ̂rcb := C(s1, k) ∧ C(s2, k) ∧ . . . ∧ C(s|S|, k) for si ∈ S, i = 1, . . . , |S|Proposition 1 (Stibor et al. [6℄). Given a universe U whih ontains all 2ldistint bit strings of length l, a set S ⊂ U and the set D whih ontains allgenerable r-ontiguous detetors, whih do not math any bit string from S. TheBoolean formula φ̂rcb whih is obtained by C(s, r) for all s ∈ S is satis�able onlywith the assignment set D.To summarize, instead of searhing for detetors e.g. by means of algorithm(1), one an use SAT-Solvers [14℄ to �nd assignments sets of φ̂rcb. This ruialfat an be exploited for quantifying the omputational omplexity of �nding de-tetors. However, one must estimate the average number of distint lauses afterapplying the transformation steps, otherwise one would onsider equal lausesseveral times � and this onsequently would make the problem �harder� then itis.3.1 Average Number of Distint ClausesLet S be a subset of U whih ontains pairwise distint bit strings s1, s2, . . . , s|S|whih are randomly drawn from U . The onstruted Boolean formula φ̂rcb doesnot neessarily ontains pairwise distint lauses. Two lauses are distint fromeah other, if they di�er in at least one literal.4 The Boolean formula is denoted as l-k-CNF, beause it is a speial type of a k-CNF.



Example 1. Let S := {0101, 1101} and r = 3, hene φ̂rcb results in
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).Example 1 shows that the seond and the fourth lause are equal, beause thelast three bits of 0101 and 1101 are equal.Proposition 2. Given bit string length l, mathing length r and let S be a subsetof U whih ontains pairwise distint bit strings s1, s2, . . . , s|S| randomly drawnfrom U . The average number of pairwise distint lauses is

E[|φ̂rcb|] = 2r (l − r + 1) −

(
1 −

1

(l − r + 1) 2r

)|S|(l−r+1)

(l − r + 1) 2r. (11)Proof. Construt a lookup table T whih ontains all 2r · (l− r +1) lauses withlabel T and is of the form
clause label

(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T
(x2 ∨ x3 ∨ . . . ∨ xr ∨ xr+1) T... ...
(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) T
(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T
(x2 ∨ x3 ∨ . . . ∨ xr ∨ ∨ xr+1) T... ...
(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) T... ...
(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T
(x2 ∨ x3 ∨ . . . ∨ xr ∨ xr+1) T... ...
(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) TTransform S into the orresponding Boolean formula φ̂rcb and set the label to

F whenever a lause in T is member of φ̂rcb. As S is randomly drawn withoutreplaement from U , the F and T labels are binomially distributed in T. Theprobability of �nding no lauses whih are labeled with F when randomly drawn
|S| · (l − r + 1) lauses from T results in

(
1 −

1

(l − r + 1) 2r

)|S|(l−r+1)and hene, the total number of lauses with label F results in
2r (l − r + 1) −

(
1 −

1

(l − r + 1) 2r

)|S|(l−r+1)

(l − r + 1) 2r.

⊓⊔



4 Computational Complexity of Generating DetetorsA ommon approah to quantify the omputational �hardness� of an instane ofa Boolean formula in k-CNF is to ount the number of baktraking attemptsin the Davis-Logemann-Loveland (DLL5) algorithm. The DLL algorithm [17℄ isbased on the elimination rules proposed by Davis and Putnam [18℄ and termi-nates either with result unsatis�able (empty lause) or satis�able (empty φ).More spei�ally, the algorithm is a depth-�rst searh tehnique and uses reur-sive baktraking for guiding the exploration. The algorithm onstruts a dei-sion tree, where assignments of the variables oinide with paths from the rootto the leafs. If a path leads to an unsatis�able result, then the algorithm baksup to a di�erent branh. This reursive searh is reiterated until it terminateswith a satis�able or unsatis�able result. In the worst ase the whole deisiontree has to be inspeted, i.e. it will take an exponential number of evaluations� similar to an exhaustive searh. However on average the DLL algorithm ismuh faster beause it an prune whole branhes from the deision tree withoutexploring the leaves.Given a Boolean formula φ in CNF, a literal l in φ and the redution funtion
R(φ, l) that outputs the residual formula of φ by:� removing all the lauses that ontain l,� deleting l from all the lauses that ontain l,� removing both l and l from the list of literals.A lause that ontains one literal is alled unit lause, and a literal l is alledmonotone, if l appears in no lause of φ. In lines 2-7 the redution funtion isapplied whenever a unit lause or a monotone literal is found. The subsequentreursive all is performed in lines 11, 13 respetively. �Easy� input instanes im-ply that the DLL algorithm requires few baktraking attempts beause lausesand literals an be e�iently eliminated by means of R(φ, l) without exeutingmany subsequent reursive alls. On the other hand, �hard� instanes imply thatmany reursive alls or baktraking attempts are required. In the next setion,the terms �easy� and �hard� are lari�ed. More spei�ally, it will be shown thatparameters |S|, l and r speify the ratio of the number of lauses to variables ofthe φ̂rcb instanes and therefore haraterize the omputational omplexity ofthe DLL algorithm.4.1 Phase Transition in k-CNF Satis�abilityThe k-CNF satis�ability problem is NP-omplete for k > 2, however, this fatdoes not imply that all instanes of the k-CNF satis�ability problem are in-tratable to solve. In point of fat, there exists many problem instanes whihare �easy� to solve, i.e. one an e�iently deide whether the instane is satis-�able or is unsatis�able. On the other hand there also exists problem instanes5 The DLL algorithm is sometimes also alled DPL or DPLL algorithm [15,16℄.



Algorithm 2: Davis-Logemann-Loveland algorithm (DLL(·))input : φ (Boolean formula in CNF)output: SATISFIABLE or UNSATISFIABLEbegin1 forall unit lauses {l} in φ do2
φ← R(φ, l)3 if φ inludes empty lause then4 return UNSATISFIABLE5 forall monotone literals l in φ do6
φ← R(φ, l)7 if φ is empty then8 return SATISFIABLE9 hoose a literal l in φ10 if DLL(R(φ, l)) = SATISFIABLE) then11 return SATISFIABLE12 if DLL(R(φ, l)) = SATISFIABLE) then13 return SATISFIABLE14 return UNSATISFIABLE15 end16whih are �hard�, i.e. one an not e�iently deide whether the instane is satis-�able or is not satis�able. The omputational �hardness� of �nding assignmentssets for randomly generated instanes is haraterized by the ratio [19℄

rk =
number of lausesnumber of variables . (12)If the Boolean formula φ has many variables and few lauses, then φ is under-onstrained and as a result it exists many assignment sets. The DLL algorithmrequires for under-onstrained problem instanes few baktraking attempts andtherefore �easily� dedues the satis�ability. On the other hand, if the ratio of thenumber of lauses to variables is large, then φ is over-onstrained and almost hasno satisfying assignment set. Suh over-onstrained instanes are likewise �easily�deduible for the DLL algorithm. However, there also exists a transition fromunder-onstrained to the over-onstrained region. In suh a phase transition re-gion the probability of the instanes being satis�able equals 0.5 and thus one hasthe largest unertainty whether the instanes are satis�able or are unsatis�able.For the 3-CNF satis�ability problem, the ratio (phase transition threshold)is experimentally approximated by ≈ 4.24 [15,20℄. That means, when r3 is lose6to 4.24, the DLL algorithm has to baktrak most frequently to determine the6 It is still an open problem to prove where the exat phase transition thresholdis loated. Latest theoretial work showed that the threshold rk lies within theboundary 2.68 < rk < 4.51 for k = 3 [21℄.



�nal result. If the Boolean formula is under-onstrained (r3 < 4.24) or over-onstrained (r3 > 4.24), then the algorithm prunes whole branhes from thedeision tree without exploring the leaves and terminates after few reursivealls.5 Experiment with φ̂rcb InstanesThe omputational omplexity of �nding detetors is experimentally investigatedwith the DLL algorithm. More spei�ally, the parameters l = 75, r = 3 arehosen and |S| is varied from 1 to 25, i.e. for eah ardinality value from 1to 25, S ontains distint bit strings whih are randomly drawn from U . As aresult, one obtains Boolean formulas φ̂rcb in 75-3-CNF with 75 variables and
(75 − 3 + 1) · |S| lauses, E[|φ̂rcb|] distint lauses, respetively. To obtain alarge number of di�erent φ̂rcb instanes, for eah value of |S|, 300 instanes arerandomly generated. The DLL algorithm is applied on eah instane and theresults: satis�able/unsatis�able and the number of baktraking attempts arenoted. The result is depited in �gure 2. The absissa denotes the ratio of theaverage number of distint lauses to variables. The ordinate denotes the numberof baktraking attempts (omputational osts). The resulting ordinate valuesare olored gray if the DLL algorithm outputs satis�able, otherwise it outputsunsatis�able and the values are olored blak.
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Fig. 2. Number of baktraking attempts (omputational osts) of the DLL algorithmto deide whether a bφrcb instane is satis�able or unsatis�able. The gray points denotesatis�able instanes whereas blak points denote unsatis�able instanes. The �hardest�instanes are lying in the interval 4 to 5, termed phase transition region.



One an see in �gure 2 that for (r3 < 4) a large number of satis�able instanesexist. Or to say it the other way around, for small values of |S| the resultingBoolean formula φ̂rcb is under-onstrained and therefore a large number of satis-�able instanes exist. The DLL algorithm hene �easily� dedues a satis�abilityresult. The number of satis�able and unsatis�able instanes is nearly equal for(4 < r3 < 5). These instanes have the largest unertainty for the DLL algo-rithm. As a onsequene, the DLL algorithm requires the most baktrakingattempts to determine whether the instanes are satis�able or are unsatis�able.A ratio (r3 > 5) implies that a large number of over-onstrained instanes existand hene, the DLL algorithm �easily� dedues the unsatis�able result. Another
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Fig. 3. Coherene between the perentage of satis�able instanes and the ratio of
E[|bφrcb|]/l. The �hardest� instanes live in the region where the number of satis�ableand unsatis�able instanes is equal, or in other words, the probability of instanes beingsatis�able equals 0.5.way to visualize this �easy-hard-easy� pattern, is to plot the perentage of satis-�able instanes on the ordinate (see Fig. 3). One an see that the probability ofthe instanes being satis�able equals 0.5 when (4 < r3 < 5) and rapidly hangesto 1 for (r3 < 4) and to 0 for (r3 > 5).6 ConlusionWe have rigorously analyzed the feasibility of generating detetors with respetto the number of self bit strings |S|, the bit string length l and mathing length r.
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