
1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
Total

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Patch Generation [s] Bug Detection [s]

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
21

22
31

32
34

41
42

44
45

51
52

53
54

61
63

64
65

66
67

68
Total

1

10

100

1

10

100

Patch Generation [s] Bug Detection [s]

 Input : Satisfiable program execution paths set
 Output: Refactoring set

BMBF-FKZ: 01IS13020

1. According to the CWE/SANS top 25 of most dangerous software errors [1], buffer overflow errors are ranked on 3rd place

2. Problem Statement:
 Provide “in-place” and not “in-place” code patches which can be used independently to remove a buffer overflow bug
 by using an available bug detector (checker)

3. We need an approach through which one can fix the bugs automatically by generating code patches

4. Definition of Ideal Code Patch [2]:
 An ideal fix covers all bug-triggering inputs and introduces no new bugs

5. Basic program repair consists of 4 steps:
● Failure Detection: Is there a bug?
● Bug Diagnosis: What is the cause for the bug?
● Bug Cause Localization: Where is the bug located?
● Repair Inference: How to fix the bug?

6. Our Approach:
 Parameterised SMT C code patches. This approach is generalizable and can be applied to other bug checkers that
 we have developed

1. An algorithm for generation of “in-place” and not “in-place” bug fixes

2. A novel approach for bug fix generation based on input saturation

3. Semi-automated patch insertion based on source files differential views

4. Automated check for behavior preserving of the patched program

 Algorithm

1. Input Saturation: The input saturation principle consists of basically limiting the possible values which the buggy
 variable can take

2. SMT Constraint System Used for Bug Detection:

● Table 1 depicts the overall
 computational overhead
 introduced by the patch
 generation tool w.r.t. the bug
 detection time

● Table 2 shows that there is
 no compilation difference
 between the patched
 programs and the
 unpatched programs. This
 is because the generated fixes
 have a small size, Lines of Code (LOC),
 and introduce no compilation overhead

● (*) depicted in column 4, of Table 3,
 indicates that in total for eight C programs the
 not in-place fix was not applicable since it would
 have changed the program behavior

● Table 4 shows if the program behavior was
 preserved after the patch insertion for the two
 types of generated fixes

International Conference on Computer Safety, Reliability & Security, SAFECOMP'15, Delft, the Netherlands

Automated Generation of Buffer Overflow Quick Fixes using Symbolic Execution and SMT
Technische Universität München, Department of Informatics,

Paul Muntean, Vasantha Kommanapalli, Andreas Ibing, and Claudia Eckert

3. Bug Type Classification: It is based on the unique identifier reported by the bug checker

4. Patch Pattern Selection: Based on the bug type classification the patch pattern(s) are selected

 5. Constraint Values Selection: The symbolic variable c (% c is the buffer size) will be selected to constrain the
 possible values of the buffer index variable

6. Generating SMT Constraint Values: The generation of the constraint values is based on the previously stored
 SMT-Lib system depicted in Listing 4 and new SMT-Lib constraints

7. Generating Final Code Patches: After solving the constraint system obtained at step 6, the obtained value(s)
 will be inserted in the previously selected patch pattern, step 4

Listing 2. Quick fix generation algorithm

Listing 1. Motivating Example

Listing 4. Second oracle (excerpt) used to compute the
numeric values needed in the final code patch

Listing 3. First oracle (excerpt)
used to detect the bug

1. (set – logic AUFNIRA)
2. (declare – fun b () Int)
3. (declare – fun c () Int)
4. % c is the buffer size
5. (assert (= c 10))
6. (assert (> = b c))
7. (check – sat)
8. (exit)

1. (set – logic AUFNIRA)
2. (set – option : produce-models true)
3. (declare – fun saturation () Int)
4. (declare – fun b () Int)
5. % c is the buffer size
6. (declare -fun c () Int)
7. (assert (= c 10))
8. (assert (> = b c))
9. (assert (< saturation c))
10.(assert (>= saturation (c - 1)))
11.(check – sat)
12.(get – value (saturation))
13.(exit)

1. void foo _ bad(){
2. int data = -1;
3. char input_buf [CHAR_ARRAY_SIZE] = “ “;
4. if (fgets (input_buf , CHAR_ARRAY_SIZE , stdin) ! = NULL) {
5. data = atoi (input _ buf);
6. + if (data > 9 || data < 0)
7. + exit (EXIT_FAILURE); // data = 9; or data = rand () % 9; or return 0;
8. } else {
9. printLine (“fgets() failed “) ; }
10. int i, buffer [10] = { 0 };
11. if (data >= 0){
12. +if (data <= 9 && data >=0){
13. buffer [data] = 1; // buffer overflow bug, index out of range
14. +} else {exit (EXIT_FAILURE) ; } // stop program execution
15. for (i= 0 ; i < 10; i++) { printIntLine (buffer [i]) ; }
16. } else {
17. printLine (“ ERROR : Array index is negative.”) ; }
18. }

S paths :={sk∣0⩽k⩽n ,∀n⩾0}
R set :={r j∣0⩽ j<2}

1. // set of working lists, k'th list
2.
3.
4. // init. Counters, count buggy paths and generated fixes
5.
6.
7.
8.
9.
10.
11.
12.
13. // if the work list length greater than o else skip path
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

W set :={w k∣0⩽k⩽n ,∀ n≥0};
N set := {n t∣0⩽t⩽n ,∀n⩾0 }; // set of nodes
N set :=∅;W set :=∅ ; // initializing both nodes set and working list set to empty set

R set :=∅;
(Sat paths . hasNext ())

(hasBug (Sk))

countBP :=countBP+1 ;

countBP :=0 ;countGQF :=0

i :=startIndex (sk) ;
w k :=setWorkList(sk);
NLocs :=1;
C :=0 ;

(getLength(wk)>0)
nt :=initNode (w k) ;
N set :=N set∪{n t};
r j :=refact(nt);
R set :=Rset∪{r j};

(i>0∧C<NLocs)
fNode :={w k ,i}
(isQuickFixNode (fNode))
nt+1 :=fNode ;
N set :=N set∪{n t+1}

setConsObject (wk) ;
(notAffectedPaths (Spaths , n t+1))

pLoc :=probLoc(nt+1) ;
putMarker (pLoc) ;
r j+1 :=refact (n t+1) ;
R set :=Rset∪{r j+1};

countGQF :=countGQF +1 ;

C :=C+1 ;

i :=i−1;

k :=k+1 ;

// count the buggy paths
// set the start index of the patch
// set the detected buggy path into the work list
// number of quick fix locations
// quick fix locations counter

// the node at which the bug was detected
// add a node for the in-place fix

// create a new bug refactoring
// add new refactoring to the set R

// get next node from work list located at index i

// store current node
// add the node for a not in-place fix
// store constraint

// put new marker
// create a new bug refactoring
// add refactoring
// count the generated fixes

// increase not in-place quick fix locations counter

// go one step backwards on the path

// get next satisfiable program execution path

Figure 2. Quick fix generation for CWE-121, “fgets” programs (note: logarithmic scale)

T
im

e
[s

]

T
im

e
[s

]

T
im

e
[s

]

Flow variants

Figure 1. Quick fix generation
for CWE-121, “memcpy” programs

Figure 3. Total patches
generation overhead

Flow variants

1 2
0

20

40

60

80

100

120

140

160

180

200 Patch Generation [s]

Bug Detection [s]

● Figure 1 presents the results of running our tool on 19 “memcpy” programs
 contained in the open source Juliet test suite [3], CWE-121 test case

● Figure 2 depicts the run-times of our tool on 39 “fgets” programs
contained in the open source Juliet test suite [3], CWE-121 test case

● In figures 1 and 2, we can observe that the patch generation time
is considerably lower than the bug detection time

● The overall bug detection time is indicated with yellow bars
for the “fgets” (1) and “memcpy” (2) programs in Figure 3

● The black bars on top of the yellow bars depicted in Figure 3 represent
the total overhead introduced by the patch generation algorithm for the
“fgets” (1) and “memcpy” (2) programs

● Note that the highest bar was obtained for Control Flow Variant (CFV) 12
depicted in Figure 2 This bar is higher than the other bars because
CFV 12 has far more control flow conditions than the other analysed
programs

Test Programs # LOC # Paths # Affected
Paths # Nodes # Not “in-place”

Locations
Patches

Generation [s] Prevented

CWE-121 memcpy 1980 39 0 2918 18 0.424

CWE-121 fgets 8771 641 20 231337 38 0.755

Total 10751 680 20 234255 56 1.197

Test Programs Bug Detection + Patch
Generation [s]

GCC Recompile
Time [s] Total [s] GCC Compilation [s] Ratio

CWE-121 memcpy 21.454 2.813 24.267 2.813 8.6x
CWE-121 fgets 178.276 6.713 184.989 6.713 27.5x

Total 199.730 9.526 209.256 9.526 36.1x

Table 1. Bug detection and patches generation results

Table 2. Comparison of time cost between our system and GCC

Table 4. Program behavior preserving

● Listing 1 contains a buffer overflow
bug at line number 13 since the
buffer index variable “data” can take
numeric values which are out of the
buffer range

● The lines beginning with the plus
symbol “+” in Listi1, (code lines 6, 7
and 12, 14) depict the two generated
fixes

● The code comments on line 7
indicate other possible fixes which
will most like change the program
behavior

● The two fixes can be used
independently to fix the bug and
follow the same patch pattern
(e.g., if (condition) then{ } and else{ }
branches)

not in-place fix

end
end

end

in-place fix

end

end

end

thenif

thenif

dowhile

thenif

thenif
dowhile

● Research Questions
RQ1: What is the overall computational overhead of our tool?
RQ2: Are the generated patches useful for bug fixing?
RQ3: Is the behavior of the patched program preserved?

● Test Programs
 We evaluated our approach on 58 C open source programs contained in the Juliet test suite CWE-121 [3]

● Methodology
We ran our refactoring generation tool on each of the programs and generated two types of patches used
for fully automatically fixing the detected bugs

● Setup
 For testing purpose we used a system having an 64-bit Linux kernel 3.13.0-32.57, Intel i5-3230 CPU @ 2.60GHz × 4

Table 3. Bug fixing results

Test Programs Recompile “in-place” Fix Not “in-place” Fix
CWE-121 memcpy

CWE-121 fgets *

Test Programs # Programs # IPrograms # IPaths % Ratio
CWE-121 memcpy 18 0 0 0

CWE-121 fgets 38 8 20 14.2
Total 56 8 20 14.2

Input

Loop 1

Loop 2

bug location

Output

● Satisfiable program
execution paths

● Loop 2 is used
for generation of
the not in-place
quick fixes

● Loop 1 is used for
generation of the
in-place quick fixes

● Output is a list
of refactorings
which are used
to fix the bugs

 Contributions

 Experiments

 Introduction

 Motivating Example

 Results I

 Conclusion and Future Work

Results II

Flow variants (“fgets” (1) and
“memcpy” (2) programs)

1.Generated patches are compilable, do not need any human refinement and can be semi-automatically inserted into buggy
programs with the help of our re-factoring wizard

2.We think that our approach can be applied to high quality projects since the generated patches remove the bug and preserve the
program behavior

3.The generated patches remove the bug and do not change the program behavior for program input which does not trigger the bug

4. Our experimental results show that our tool is efficient and successfully removed all bugs

5. In future we want to use our approach in order to fix other type of bugs and on larger C programs w.r.t. LOC

[1] Mitre. 2011 CWE/SANS Top 25, http://cwe.mitre.org/top25/
[2] Z. Gu et al. Has the bug really been fixed?. Proceedings of the ICSE’10, 2010
[3] United States, National Institute of Standards and Technology (NIST): Juliet Test Suite v1.2 for C/C++,

 online: http://samate.nist.gov/SRD/testsuites/juliet/Juliet_Test_Suite _v1.2_for_C_Cpp.zip

 Steps used in Our Approach

 References

	Slide 1

