

● Problem: The currently used Control-Flow
Integrity (CFI) protection schema in [1] is
too permissive; it allows too many (and
impermissible) call-targets per call-site.

● Current Solutions:
 a)Compiler-based techniques:
 [Bounov et al. NDSS'16][1]
 [ShrinkWrap, ACSAC'15][2], [IFCC/VTV, USENIX'14][3],
 b)Binary-based techniques: [vTint, NDSS'15][4], [TypeArmor, S&P'16][5]
 c)Run-time-based techniques: Intel CET [6], Windows CFGuard [7].
● Limitations of Current Solutions:
 a) Precision: of caller/callee mapping can still be improved.
 b) Performance: worst-case run-time overhead,7-8%; drops to 2%.

 c) Identification: accuracy of call-site/call-target (for binaries) is low
● Our Insight: The number of call-targets per call-site can be
reduced by carefully analyzing the class and virtual table hierarchies.

 → we use the call-site object type (base class) and the virtual table of
 the calling object.

● We reduced the number of call-targets per call-site, thus improving
the precision of our mapping. (precision)

● We decreased the performance overhead w.r.t [1]. (performance)
● We shrinked the binary blow-up size. (binary size)
● We improved the protection coverage. (increased security level)

Google Ph.D. Student Summit on Compiler & Programming Technology, 5-7 Dec. 2016, Munich, Germany

vTableShield: Precise Protecting of Virtual Function Dispatches in C++ Programs
(work in progress)

Technical University of Munich, Computer Science Department, Chair for IT-Security
Paul Muntean, Peng Xu, and Claudia Eckert

● Research Questions
 RQ1: How precise is vTableShield? (call-site/call-targets mapping)
 RQ2: What is the performance of vTableShield?
 RQ3: What is the binary blow-up after adding the CFI checks?
 RQ4: What is the protection coverage (sec. level) w.r.t. other tools?
● Test Programs
 Google Chrome, Google V8 Engine, SPEC 2006, etc.
● Methodology
 We run vTableShield on each program in order to compute the
 smallest possible range for each call-site; next range checks habe
 been added during LLVM link time.
● Experimental Setup

 For testing purpose we use a system having an 64-bit Linux kernel,
 and the Intel i5-3230 CPU@2.60GHz×4.

● Results
 RQ1(precision): The number of call-targets per call-site was reduced
 of up to 50% w.r.t. [1] on average.
 RQ2 (performance): We improved the run-time performance
 overhead w.r.t. previous work.
 RQ3 (binary size blow-up): The binary size has been reduced
 w.r.t. previous work.
 RQ4 (increased level of security): By reducing the call-targets per
 call-site ratio (i.e., thousands of call-targets per call-site are no
 longer available to the attacker) we raised the bar for any attacker
 who tries to use the remaining attack surface.

 2. Contributions

 7. Evaluation

 1. Introduction

 4. Background

 8. Conclusion and Future Work

[1] Bounov et al. “Protecting C++ Dynamic Dispatch Through Vtable Interleaving”,
 In: NDSS'16.
[2] Haller et al. “ShrinkWrap: VTable Protection without Loose Ends”, In: ACSAC'15.
[3] Tice et al. “Enforcing Forward-edge Control-flow Integrity in GCC and LLVM”,
 In: USENIX SEC'14.
[4] Zhang et al. “vTint: Protecting Virtual Function Tables’ Integrity”, In: NDSS'15.
[5] van der Veen et al. “A Tough call: Mitigating Advanced Code-Reuse Attacks At
 The Binary Level”, In: S&P'16.
[6] Intel Control-flow Enforcement Technology (CET), URL: http://blogs.intel.com/eva
ngelists/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks/
[7] Microsoft, Windows Contol Flow Guard, URL: https://msdn.microsoft.com/en-us/
 library/windows/desktop/mt637065(v=vs.85).aspx

 5. Design

 9.References

● Obtain the object type and the virtual table used during the object
dispatch.

● We interleave the virtual table layouts such that we obtain the
smallest possible range for each indirect call site.

● We filter the resulted ranges based on virtual table inheritance
 paths such that we obtain the smallest candidate range per call-site.

 6. Implementation

● Consider: Base1* obj2 = new Base1(); obj2→ vfN();
● The virtual pointer can be corrupted (i.e., red arrow from above Figure)
to point into a different virtual table. The new virtual table is (not) in the
expected class or virtual table hierarchy.

 3. Motivating Example

● The Clang (LLVM front-end) is extended in order to provide the
virtual tables as meta data during LLVM link time.

● The class hierarchy analysis (CHA) is used do compute virtual table
inheritance paths.

● The virtual table inheritance paths are analyzed in order to derive
permissible and impermissible ranges for each call-site.

● The new range checks are added before each indirect call site.

2

3

5

● In this work, we presented vTableShield, a compiler based tool used
during run-time to enforce the most precise range of virtual tables
per call-site.

● The results depicted in Section 7 considerably raise the bar for any
attacker who wants to exploit: Google Chome, Google V8 Engine, etc.

● In future, we want to further improve the forward CFI protection
schema and provide a similar protection schema for backward edges
(e.g., virtual function returns).

1

Supported by the Bavarian State Ministry of Education, Science and the Arts as part of the FORSEC research association.

4

Circles represent C++ classes, squares represent virtual tables,
thick arrows represent the first inherited class, thin arrows represent other
inherited classes and dashed arrows represent inheritance relations
between the virtual tables.

not interleaved virtual table layout interleaved virtual table layout

[4]

[1]

[2]

[1]

[1]

mailto:CPU@2.60GHz

	Slide 1

