Practical Information-Flow Aware Middleware
for In-Car Communication

Alexandre Bouard
BMW Forschung und Technik
Gmbh
Munich, Germany

ABSTRACT

Today’s vehicles are increasingly connected to Internet, de-
vices and integrate more and more electronic components.
More than just ensuring their passengers’ safety, which re-
mains nevertheless one of their main objectives, cars have
to deal with private information and encounters the same
security issues as traditional computers. Until recently, au-
tomotive technologies allowed very little space for security,
but the transition towards full Ethernet-based on-board net-
work will change this situation. In this paper, we present so-
lutions for decentralized information flow control in order to
enhance the security and privacy level of the car data man-
agement. We describe the implementation of these mecha-
nisms in an automotive middleware and propose its evalua-
tion.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords

Car, Security & Privacy, Decentralized Information Flow
Control, Middleware, Automotive Applications

1. INTRODUCTION

During the last couple of decades, cars have evolved from a
simple mean of transportation to a complex distributed elec-
tronic system, simultaneously managing infotainment and
safety functionalities. Today, while still serving their pri-
mary purpose, cars provide new mobility services taking ad-
vantages of powerful embedded hardware platforms and ef-
ficient interconnections with the external environment (e.g.,
Internet, smartphones, other cars). As a consequence, vehi-
cles will have to process more and more data from different
sources, belonging to different protagonists and eventually,
like our smartphones, they will soon allow the user to install
third-party applications (TPAs) [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CyCAR’13, November 4, 2013, Berlin, Germany.

Copyright 2013 ACM 978-1-4503-2487-8/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517968.2517969.

Benjamin Weyl
BMW Forschung und Technik
Gmbh
Munich, Germany
alexandre.bouard@bmw.de benjamin.weyl@bmw.de

Claudia Eckert
Technische Universitat
Milnchen
Garching, Germany

claudia.eckert@in.tum.de

In the last few years, information about several weak-
nesses related to automotive security and the feasibility to
easily exploit them [2] circulated and have been discussed
by the research community. However, current technologies’
limitations and requirements for low latency and robustness
left little room for security. Part of the solutions seems to
lie in the use of Ethernet and the Internet Protocol (IP)
as standard communication protocol for the on-board net-
work [3]. While providing a bigger bandwidth and strong
security protocols for encryption and authentication, it does
not completely address every information security issue. In-
creasing complexity of the car software and the integration
of untrusted components like consumer electronics (CE) de-
vices or TPAs could result in data leakage and even more
exploitable interfaces.

In order to improve security and privacy on the on-board
network, we base our approach on a Decentralized Informa-
tion Flow Control (DIFC) model [4]. This approach allows
control of the pieces of information which can be exchanged
between two entities and to monitor how they are spread in
the system. The goal is to have the car acting as a data safe
and regulating every internal and external data exchange
according to specific security policies. A trusted computing
base including a part of the software, the middleware, is in
charge of enforcing these rules and allows a homogeneous
and scalable way to manage the authorization process.

The main contributions presented in this paper are:

e An authorization model enforcing DIFC for on-board
communications and allowing a secure integration of
CE devices and TPAs.

e A framework implementation integrating the automo-
tive IP-based communication middleware Etch [5] and
isolation techniques for the TPAs.

The rest of the paper proceeds as follows. After having
given a brief overview about the on-board automotive archi-
tecture and related work in Section 2, Section 3 introduces
the model used to apply DIFC in an automotive environ-
ment and its enforcement. Finally Section 4 presents our
implementation and Section 5 provides its evaluation.

2. BACKGROUND AND RELATED WORK

This section provides background information on future
automotive systems and related work about security and
privacy. A threat model and some relevant scenarios are
described as well.

2.1 Future Automotive architecture

The automotive on-board network interlinks up to 80 Elec-
tronic Control Units (ECUs) thanks to different communica-
tion buses and is organized in domain-specific sub-networks
(e.g., for power train or infotainment). On-board applica-
tions include several elementary function blocks distributed
over separated ECUs exchanging broadcasted signal-based
messages. Due to on-board plaintext communication and a
lack of input validation in the ECUs, cars have been shown
weak against common security exploits, e.g., packet injec-
tion, buffer overflow [2].

The advantages of Ethernet/IP for vehicle on-board net-
work are twofold. Firstly, a bigger bandwidth will allow to
internally exchange larger objects (e.g., environment mod-
els) between ECUs and to comply with the future applica-
tion requirements for driver assistance and infotainment [6].
Secondly, mature and secure protocols from the Internet
world will be immediately usable. Besides, the development
of engineering-driven middleware will greatly simplify the
communication management. It will abstract and automate
the network addressing and security enforcement [7]. Then
the centralization of most of the external wireless interfaces
(e.g., LTE, Wi-Fi) in a multi-platform antenna-ECU (called
proxy here) will enable car makers to design a single security
gateway for all Car-to-X (C2X) communications [8].

2.2 Threat Model and Scenario

Today’s cars are facing several challenges: their functional
behavior relies on complex software processing a consider-
able amount of sensitive data and soon integrating TPAs.
Defects in the application logic or weak security mecha-
nisms [2] could result in leaks of private information or in-
dustrial secret and in the worst case endanger the car safety
mechanisms and potentially the life of the car passengers.
The car IT system should enforce security policies and con-
sistent mechanisms assuring car-wide confidentiality and in-
tegrity guarantees.

Our scenario, depicted in Figure 1, features a TPA, run-
ning on the Head Unit (HU) and a CE device communicating
with several internal components of the car. This work aims
at improving information security in cars and at addressing
the threats related to unauthorized entities wanting to access
sensitive automotive data. Our threat model includes unin-
tentional programming bugs at the application level causing
information leakages and unfair authorized parties, internal
ones like TPAs or external ones like CE devices, trying to
elude security policies, i.e., by trying to access or leak data
they have no authorization for.

Assumptions: Future ECUs will make use of a security
middleware and will communicate over strong security pro-
tocols like IPsec [7]. Additionally they will soon integrate a
hardware secure extension providing secure key storage and
secure boot [9]. Besides the development of an automotive
middleware layer according to secure coding practices will
also limit the risk of attacks involving overwriting of stack
pointers, e.g., buffer overflow. Consequently we assume that
the middleware and the hardware platform cannot be com-
promised. We trust the ECUs to establish secure communi-
cations channels with each other and to enforce the expected
security mechanisms. Denial-of-Service (DoS) attacks are
partly considered at the end of this work.

@ _LiE £) Head

CE (= Unit
device IP/Ethernet '
Sensor ECU CAR Controller ECU

Figure 1: Automotive scenario. Solid right-angle
lines represent the wired on-board network. The
dashed arrows represent external wireless commu-
nications. We define as service, a group of on-board
applications sharing a same middleware. (TPA:
Third-Party Application)

2.3 Related Work

Information Flow control (IFC) is a type of mandatory
access control. Principals (e.g., a person) having access to
an object (e.g., a document) and the aforementioned ob-
ject are given security labels designating a clearance level
(e.g., secret, top-secret). A partial order, based on the la-
bels, defines whether the access is granted [10]. DIFC [4]
extends the IFC model. It allows an object (e.g., an ap-
plication) to divide its rights by creating new labels and to
control with more flexibility the label management and en-
forcement. The model has been adapted at the granularity of
a process. During runtime processes are separated between
trusted and untrusted. Label-based rules are enforced lo-
cally by the operating system (OS) [11, 12] but labels can be
exchanged and enforced between hosts over the network as
well [13]. While clearly enhancing the information security,
these approaches are too fine-grained and suffer from a too
significant performance impact, we therefore chose a lighter
approach and enforce DIFC only on communication between
on-board services. Enforcing IFC thanks to label exchanges
is not new. The DEFCON customized Java virtual machine
can enforce isolation and label management when all the
applications are present on a single host [14]. For Pedi-
gree, a central server and customized network switches can
distribute and enforce IFC policies on communications be-
tween several hosts in a corporate network [15]. In contrast,
the software components of a car are distributed over several
hardware platforms equipped with different OSs. In order to
reduce the risk of errors, latency and maintenance complex-
ity, the IFC enforcement cannot rely on any central entity
for the authorization management and cannot be enforced
by the hardware or its OS.

3. DIFC MODEL FOR AUTOMOTIVE ON-
BOARD NETWORK

Automotive DIFC is about monitoring the in-car propa-
gation of data of interest. But instead of monitoring every
process, we focus on network exchanges between on-board
services and external devices. Services regroup several on-
board applications on top of a same middleware layer The
applications of a service share the same security concerns for
integrity (e.g., because they trigger the same safety mech-
anisms) and confidentiality (e.g., because they share data
with the same sensitivity). For this reason, a label is as-
signed to every service/device perpetrating a message ex-
change. A trusted part of the ECU software, the middle-

ware, which is independent from the labeled resources and
whose integrity can be checked, is in charge of monitoring
and labeling network exchanges. The rest of the section de-
scribes our label-based security model, adapted from [13,
14].

3.1 Security Labels

One security label is assigned to each principal. Com-
paring labels allows to constrain the information flow and
therefore to protect the information integrity and confiden-
tiality, for example by isolating potentially corrupted data
from critical applications or preventing unauthorized disclo-
sure of private information.

Labels comprise two components: the first characterizing
the principal’s secrecy S, the second its integrity /. S and
I are two sets of tags. A tag represents the concern of an
individual about the secrecy/privacy (in S) and integrity
(in I) of some data. Tags are unique values in the system,
implemented as bit-strings, we refer to them with symbolic
names, like xs. The subscripts s and i of xs and x; designate,
respectively a secrecy- and an integrity-tag. The x specifies
the principal, whose security concerns it characterizes, i.e.,
the service x or the CE device of the driver x. Secrecy tags
are “sticky”: once added to a piece of information, it cannot
flow to a principal lacking the exact same tag. On the other
hand integrity tags are fragile: a piece of information loses
it as soon as the principal processing it is differently tagged.

The labels form a lattice enforcing a form of mandatory
access control. Information labeled with the secrecy tags of
S4 can flow to a principal labeled with Sg if and only if the
tags of Sa are included in Sg. Inversely, information labeled
with the integrity tags of Ia can flow to a principal labeled
with I if and only if the tags of 4 contain the ones of I5.
We define the partial order “<” (pronounced “can flow to0”)
for two labels La = (Sa,Ia) and Lp = (SB, IB) as:

La<Lpiff S4 CSgand s D Ip

Because the services are distributed over different ECUs
and do not know each other’s labels, we label the exchanged
messages. When A sends a message M to B with La,
Ly, Lp their respective labels, we enforce the property
La < Ly < Lp. Constraining the message label allows
the message to be disclosed by A (A can label M with La
such that Ls < L) and then accepted by B (B checks
the condition La; < Lp, i.e., La < Lg). In our scenario,
data stored on the HU should be tagged with different val-
ues reflecting the different drivers’ secrecy, so that only an
appropriate TPAs or CE devices can receive a message con-
taining a particular driver’s data.

3.2 Tag Ownership

If information could only follow the partial order “<”, the
labeled messages would only be transmitted to principals
classified at a greater or equal level of secrecy and most
data would never be able to leave the car. DIFC decentral-
izes the management of exceptions: each service S may be
assigned a set of tags O, allowing it to omit from the label
restrictions included in O. We say that S owns the tag of
O. Obviously no service should own all the tags of the sys-
tem; a service should own only the necessary tags in order
to remain functional.

We write “<o” (pronounced “can flow to, given O”) the
new partial order taking into account the ownership to the

tag of O. Practically, a tag t included in O confers the
possibility for a service S to omit the restriction imposed by
t. For data flowing from A to B, except for the tags included
in O, the label L4 contains all the integrity tags of L and
Lp contains all the secrecy tags of La. We now define “<o”
for two labels L4 = (Sa,la) and Lp = (S, Ig) and the
ownership O as:

La<oLpif SA—OCSg—0Oand Ix—-—0DIg—0

Like earlier, A with the ownership O4 can send a message
M and B with the ownership Op can receive it if and only
if La <0, Lm <0z Lp. An untrustworthy TPA will not be
given any ownership and therefore will not be able to modify
its own label in order leak the driver’s data or access other
driver’s data. On the contrary the proxy will be given the
ownership of the driver’s tags in order to be able to send his
data to his CE device. The proxy provides a high security
level and is trusted to use its ownership in a secure manner.

During runtime, a principal may decide to create and own
a new tag, which reflects a new security concern. At its
discretion, it can decide to grant the ownership to another
principal. Thus the proxy can create for every new user new
tags for secrecy and integrity and grant their ownership to
the HU, in order to label and protect the users’ data the HU
may store.

Dynamic Label Assignment (DLA): A DLA is an
explicit request from a service to another in order to add a
tag to the latter’s label. A newly installed TPAs starts with
no tag ownership and an empty label, preventing it from
receiving and contacting most on-board functions. In order
to send to it some driver’s d private data, the HU, which
owns ds can force the TPA to include them in its label. The
tags cannot be taken out and constrain the TPA to only send
messages to principals including ds in their label.

3.3 DIFC Framework Architecture

In order to maintain performance and to limit the risk of
error, we only monitor on-board information flows between
services. Applications in a same service share the same secu-
rity concerns and therefore can be labeled together. Services
are isolated from each other in their own address space or
physically separated, i.e., on different ECUs. We chose to
enforce DIFC at the middleware level, the software layer
common to every service, easily auditable and in charge
of the network communications. Our architecture is de-
picted in Figure 2. Applications in different services inter-
act through their middleware, which provides the functional
logic for communication and protocol implementation (Se-
cure Channel Manager). The middleware header of every
message is extended with a field containing the message la-
bel. The middleware labeler makes sure that the partial
order <o between service and message labels is enforced for
both incoming and outgoing traffic. Applications are DIFC-
unaware and do not take part of the label management. The
remainder of this section provides more specifications about
the automotive label assignment, policies and management.

Label assignment: Each service x is labeled with its own
integrity and secrecy tags (xi, xs) characterizing its own se-
curity concern. The assignment of additional label tags or
tag ownership is defined by the car manufacturer at design
time, depends on the implemented use cases and remain
static along the car life. During runtime the proxy is the
only one able to dynamically create new tags related to a

ECUB

Service R
[App. 1][App. 2 |...[App.

Middleware and SME S Middleware and SME R

1.2 .2
PMM S: Os={ys}, Ls={x;. x} PMM R: O={xs}, Li={ys}
i SCM S SCMR <
~ ~—/
Wessage M L= (D>

Legend: Service S Service R
1.1. Data sending 2.3. Data Reception

Middleware S Middleware R

1.2. Data Labeling (such as 2.2. Label extraction and

Ls =< Lw, for example Ls=Ly) policy enforcement (Ly—=<Lg)
1.3. Data sending through a 2.1. Data reception through
secure network channel a secure network channel

Figure 2: Overview of the framework architecture.
A labeled message M is exchanged between 2 appli-
cations (App.) of S and R services through a secure
channel. L and O designate the service label and
ownership. xs, ys and x; are secrecy/integrity tags.

new user profile and to grant them to relevant ECUs, like
the HU. We do not consider the addition of new services and
therefore of new service tags during runtime. But obviously,
new service tags would force the car maker to update the
middleware label and ownership of every middleware com-
municating with the new service.

Security Policies: We identify two types of policies.
The first ones are static and enforced in the Secure Channel
Manager for establishing communications channels between
ECUs, e.g., in the database listing every IPsec Security As-
sociation. The second ones, enforced in the labeler, specify
which operations on labels are authorized, and specify the
enforcement of <o for incoming and outgoing message la-
beling. These rules are defined by security experts during
the design phase and remain static along the runtime.

Label Management In order to control on-board infor-
mation flows, on-board services exchange labeled messages
and store labeled data. However, in case of complex data
fusion involving different labels, we chose to not concate-
nate the labels. Instead we define simple prioritization rules,
which allow the middleware to restrain the size of the mes-
sage labels, i.e., one tag for the secrecy and one tag for the
integrity. For example, the secrecy tag of a sensitive ser-
vice has priority over a user tag, i.e., the data, which are
sensitive for the car manufacturer, should stay in the car.
The tag of user has priority on a non-sensitive service tag.
This limitation of the label complexity allows to keep the
DIFC enforcement efficient. The list of sensitive services is
embedded in the middleware and statically setup by the car
manufacturer.

4. IMPLEMENTATION

This section describes the DIFC extensions of the middle-
ware Etch and its associated security communication proxy.

Middleware: We made use of the middleware Ftch, an
open-source software project under the Apache 2.0 license.
Etch offers a modular and extensible architecture provid-
ing an efficient serialization and is a serious candidate for
automotive purposes [17]. We chose its C-binding and ex-

tended the middleware header with two fields of 15 bytes
for the integrity and confidentiality labels. Label serializa-
tion/extraction and enforcement is performed in the soft-
ware logic of the middleware. The tags of the service label
and ownership are stored in 2 distinct tables. An implemen-
tation making use of hash table may provide better perfor-
mance for a big number of tags. The application part can
consult the labels, but not modify them. A future version of
Etch will allow to directly specify labels and ownerships of
the service through a suitable interface description language
(IDL) and will provide automatic insertion of the code snip-
pet enforcing the label policies in the middleware code.

We developed an Etch proxy in C, similar to the one devel-
oped for [8]. The proxy provides two secure communication
interfaces: external over SSL and internal over IPsec. Inter-
nal and external communication partners communicate over
a mirror-service, making the communication decoupling to-
tally transparent. The proxy is application-unaware. Either
it extracts a label from the payload of an outbound message
and enforces the required policy, or it adds a label to the in-
bound message. User tags are based on the identity provided
by the client certificate of the external SSL connection.

TPA environment: Regarding the isolation of a TPA,
we make use of the XEN® hypervisor 4.2, set up on the
HU. We run the “trusted” HU middleware and applications,
developed by the car manufacturer, in the most privileged
domain, called Dom0. The untrusted TPAs run in unpriv-
ileged cells, called DomU. Communications between Dom0
and the DomUs occur over a virtualized bridge. XEN iso-
lates and prevents the DomUs from disturbing Dom0 or from
getting a direct access to the on-board network otherwise.
The untrusted applications run on top of a label-unaware
ETCH middleware. A dedicated part of the HU middle-
ware running in Dom0 forwards messages toward and from
the TPAs and enforces the DIFC policies for every message
entering or exiting an untrusted cell.

Testing environment: For the implementation and the
experiments described in Section 5.2 we used three comput-
ers interlinked with Gigabit Ethernet and running standard
32-bit Fedora Linux on an Intel Atom N270 (1,6 GHz) with
1GB RAM. The DomU runs a OS Debian 6.0 with 256 MB
of allocated RAM. While being more resourceful than many
embedded platforms of the cars, they provide performances
similar to a HU [18]. Besides we did not extensively mod-
ify the Ftch middleware mechanisms, which provide suitable
performances when tested on a microcontroller [17]. There-
fore we believe that the addition of this simple DIFC ac-
cess control layer should not significantly impact the system.
Though this has to be verified for a more rigorous validation.

5. EVALUATION

In order to evaluate our system, we discuss the security of
our concepts and quantify the performance overhead of our
implementation.

5.1 Security Evaluation

In order to illustrate how our DIFC framework helps to
build a secure on-board system, we focus on the scenario
that reflects the threat model presented in Section 2.2. Fig-
ure 3 shows the overall scenario architecture and label dis-
tribution. A CE device connects to the proxy and can then
contact on-board service functions and a TPA through the
HU. The TPAs can get access to the driver’s data stored

\ L=}, pep—— Head Unit
cwa]

~

L= (0 43 (Drver Data)L= @,) |
I I

L= {b}, Service of ; L={}, O={a,, I

0= {bs}| Controller ECU B b, ds, di} |

|

L={a},| Service of | @P Application) L=_{ds)y
O={a;} [Sensor ECU A N O= {d; _

Figure 3: Automotive scenario. Rectangles repre-
sent services running on an independent middle-
ware. Round boxes represent DIFC unaware ap-
plications, devices and files. Solid arrows represent
middleware-based communications.

on the HU or data from a ECU A and potentially trigger
mechanisms on the ECU B.

Discussion: Our architecture does not propose any hi-
erarchy of privileges, on contrary all services are mutually
distrustful. As a consequence the effects of a successful at-
tack or bug in an application are limited to the labels their
middleware is associated with.

First the CE device gets authenticated by the proxy, which
binds the device to the driver’s labels ds and d;. The proxy
then explicitly grants the HU with these labels, so that the
HU can label the driver’s data and label the TPA as acting
for the driver (DLA with ds and d;). CE device and TPA
are untrustworthy components, we do not rely on them to
handle any label, instead the proxy and a dedicated part of
the HU service are enforcing the DIFC rules for them.

The TPA is minimally trusted and is confined to the tags
ds and d;j. The secrecy tag ds constrains the TPA to read
sensitive data, which only belongs to the driver. The own-
ership of the integrity tag d; allows the TPA to write on the
driver’s data. The presence of d; in its label would force the
TPA to receive d; labeled information and prevent it from
accessing other nonsensitive information like configuration
files. In our scenario, a malicious TPA is limited to send
messages only to the driver’s device and can only modify his
data. A label only including ds, without d; or ownership of
di, would limit its data access to “read-only”. Because a CE
device is bound to one identity and communicates with the
TPA, we limit the label of the TPA to tags of only one person.
In a same manner, the CE device is restricted to the tags of
its owner. It can only contact services with no integrity tags
in their label. Such services should be carefully designed
and follow secure coding practices both at the middleware
and application levels. Besides, the CE device can only re-
ceive driver-labeled or unlabeled, i.e., nonsensitive, informa-
tion, which limit the risk of information leakage. The proxy
can generate new tags for the devices it communicates with,
owns them and is empty labeled, in order to always be able
to communicate with any new device or Internet service.

Labels can also constrain information flows between ser-
vices. The HU service can receive messages from ECU A
only if it the HU has the tag as in its label or ownership.
Therefore, even when forwarded by a multicast address by
mistake, messages from A containing sensitive information
will never been processed and sent out by the proxy or by
another service without the tag as. On the other hand the
HU owns the tags as and ds, the HU can therefore make cer-
tain messages from A available to the TPA. An ECU B with

bi in its label, will only receive data (e.g., call to trigger a
mechanism) from ECUs with b; in their label or ownership.

No middleware is fully trusted and benefits from all tag
ownership. Labels, ownership and DLA allow to express the
security concerns of components presenting different levels
of security. Each on-board service can specify its own secu-
rity requirements and trust the remote middleware layer to
enforce them.

System Limitations: Our framework relies on the in-
tegrity of the OS and middleware. Despite all the effort of
car manufacturers to audit and test their software, vulnera-
bilities may allow an attacker to take control of the labeling
process. The secure boot mechanisms, mentioned in Section
2.2, won’t cope with runtime attack. Intrusion detection
systems (IDS) may be one solution to detect and inform
the driver about an ongoing attack. On the network, an
IDS can monitor the traffic and ensure that the right ser-
vices exchange the right message labels at a reasonable rate,
i.e. not flooding the network. Within an ECU, an IDS can
perform scans and recognition of instruction patterns. IDS
solutions cause usually significant performance degradation
and should be only used, if necessary, for non time-critical
applications and subnets. A less costly solution, to limit the
impact of a successful attack, is to limit the services’ size, so
that they only handle a little number of tags. Every message
can be extended with an unforgeable token specifying which
tags are included in the sender’s label and ownership. The
token has to be signed by a trusted entity and easily verifi-
able by the receiver and can prevent a compromised service
to use any kind of tag.

Regarding the TPAs, they run isolated in an unprivileged
XEN cell, where the corruption of the OS and the exhaus-
tion of the virtual machine (VM) resources can be easily
detected. Besides, the HU service can also restrain the emis-
sion rate of the TPA, in order to limit its capacity to launch
a flooding DoS attack. However, several users, i.e., a driver
and some passengers, imply to have several running VMs
and may require too many resources from the HU. Another
solution, not investigated here, would be to run the TPAs
in a binary instrumentation framework. Such framework al-
lows to taint sensitive data from different users within the
running application. It can detect attacks like buffer over-
flows and determine, whether an output from the TPA has
to be considered as sensitive or dangerous.

5.2 Performance Evaluation

We measure the middleware throughput (in calls/sec) be-
tween a CE device and an on-board TPA in order to demon-
strate the overhead of our DIFC framework. Benchmarks
are run on three separated machines running our Etch ser-
vices: CE device, proxy and HU. Our setup here is similar to
the scenario presented in Section 5.1. The CE device sends
a simple Etch message containing an integer to the TPA.
Based on this integer, the TPA retrieves a series of integers
from a database of the HU, computes an answer and sends
it back. This message exchanges pass through the proxy
and the HU, where DIFC rules are enforced. Our results,
in Table 1, present the throughput performances of this sce-
nario for various security levels. We first measured them
without any security feature enabled as reference (1). We
then performed the same tests when adding the isolation of
the TPA in a XEN cell (2) and the communication encryp-
tion (3) (SSL on the link CE device-Proxy and IPsec for

Table 1: Middleware throughput performance of the scenario presented in Section 5.2 (Virt.: TPA is placed in

a Virtualization Environment, Enc.: The communications are encrypted and DIFC: DIFC rules are enforced).

Factor (i) presents the normalized performance with (1) as reference, while factor (ii) takes (3) as reference.
Enabled Security Feature || Null (1) | Virt. (2) | Virt./Enc. (3) | DIFC/Virt./Enc. (4)

0.85 0.66 0.60

Factor (i)

Throughput (call/sec) H 230 196 152 137
1

Factor (ii)

the link Proxy—HU), in order to determine a lower bound
overhead imposed by the security framework without DIFC.
We finally repeated the measurements when enforcing DIFC
rules on the proxy and HU (4) and evaluated their impact.

Discussion: Our results, in Table 1, show that the virtu-
alization environment and the use of security protocols are
responsible for the most significant part of the performance
loss (~34%). The XEN paravirtualization and the virtual
network bridge between Dom0 and a DomU decreases the
system performance by 15%. The payload encryption/ de-
cryption and integrity checks, performed by SSL for external
communications and IPsec for internal ones, cause an addi-
tional penalty of 22%. The enforcement of label-based rules
for communications between Proxy and HU and between
HU and TPAs represents only 10% of the overhead. The
overhead imposed by the DIFC rules are relatively small in
comparison to the other security features presented here.
The use of the DIFC framework seems to be suitable for
infotainment use cases involving a CE device and requiring
moderate bandwidth (130 calls/sec with payloads containing
32 bits of information). In addition, our measurements for
communications between 2 nodes (ECUs), with DIFC and
IPsec, have shown to reach 1100 calls/sec for small payload
(32 bits) and 9,8 Mbit/sec when using bigger ones (65 kbit).
Such results demonstrate that despite the security enforce-
ment, our middleware remains functional, flexible and can
provide relatively large bandwidth and a high frequency of
calls. But, as previously said, our evaluation is mostly fo-
cused on our middleware in a 3-node network for a specific
scenario. Additional investigations in larger network pro-
ducing more traffic are recommended for further validation
with use cases demanding large bandwidths (e.g., real time
video streaming) and high robustness (e.g., safety function).

6. CONCLUSION

In this paper, we presented a new automotive security
framework leveraging information flow control techniques to
enhance the security level of the on-board data management.
While we have certainly shown that these concepts can be
efficiently adapted and integrated into an automotive mid-
dleware for infotainment applications, further investigations,
in direction of system latency and robustness, are required to
use it for safety-critical applications. Although DIFC alone
cannot mitigate the risk induced by TPAs, carefully chosen
isolation and monitoring mechanisms, complying with the
automotive requirements, need to be added. As following
work, we are now focusing on investigating the feasibility
of tracking information flow at the binary-level in very un-
trusted applications.

7. REFERENCES
[1] Lutz Z.: Renault debuts R-Link, engadget and
Renault press release at LeWeb’11 (2011)

1 0.90

[2] Koscher, K. et al: Experimental Security Analysis of a
Modern Automobile. In Proc. of the 81° IEEE S&P,
pp. 447-462, IEEE (2010)

[3] Glass, M., Herrscher, D., Meier, H., Piastowski, M.,
Shoo, P.: SEIS - Security in Embedded IP-based
Systems. In ATZelekironik worldwide, 2010-01 (2010)

[4] Myers, A. C., Liskov, B.: Protecting Privacy Using
the Decentralized Label Model. In ACM Transactions
on Software Engineering and Methodology, vol. 9, pp.
410-442, ACM (2000)

[5] Etch home: http://incubator.apache.org/etch/

[6] Schénenberg, P.: Introduction of Ethernet. In 6™
Vector Congress (2012)

[7] Bouard, A., Glas, B., Jentzsch, A., Kiening, A., Kittel,
T., Weyl, B.: Driving Automotive Middleware
Towards a Secure IP-based Future. In 10" escar
(2012)

[8] Bouard, A., Schanda, J., Herrscher, D., Eckert, C.:
Automotive Proxy-based Security Architecture for CE
Device Integration. In 5 Mobile Ware 2012, pp.
62-76, Springer (2012)

[9] Fujitsu Semiconductor Europe: Fujitsu Announces
Powerful MCU with Secure Hardware Extension
(SHE) for Automotive Instrument Clusters. In Fujitsu
Press Release at www.fujitsu.com (2012)

[10] Department of Defense: Trusted Computer System
Evaluation Criteria In Orange Book (1983)

[11] Efstathopoulos, P. et al: Labels and Event Processes
in the Asbestos Operating System. In Proc. of the
20th ACM SOSP, pp. 17-30, ACM (2005)

[12] Zeldovich, N. et al: Making Information Flow Explicit
in Histar. In Proc. of the 7th USENIX OSDI, pp.
19-19, USENIX Association (2006)

[13] Zeldovich, N., Boyd-Wickizer, S., Mazieres, D.:
Securing Distributed Systems with Information Flow
Control. In Proc. of the 5th USENIX NSDI, pp.
293-308, USENIX Association (2008)

[14] Migliavacca, M., Papagiannis, 1., Eyers, D. M., Shand,
B., Bacon, J., Pietzuch, P.: Defcon: High-Performance
Event Processing with Information Security. In Proc.
of the USENIX ATC’10, pp. 1-1, USENIX (2010)

[15] Ramachandran, A., Mundada, Y., Tariq, M. B.,
Feamster, N.: Securing Enterprise Networks Using
Traffic Tainting. In Special Interest Group on Data
Communication (2008)

[16] Xen® hypervisor homepage, http://www.xen.org/

[17] Weckemann, K. et al: Lessons from a Minimal
Middleware for IP-based In-car Communication. In
Proc. of the IEEE IV’12, pp 686-691, IEEE (2012)

[18] BMW web site. Navigation system Professional, www.
bmw.com/com/en/insights/technology/technology_
guide/articles/navigation_system.html

