

14. Deutscher IT-Sicherheitskongress des BSI 1

Retrospective Protection utilizing Binary Rewriting

Sergej Proskurin, Fatih Kilic, Claudia Eckert1

Abstract:

Buffer overflow vulnerabilities present a common threat. To encounter this issue, operating system

support and compile-time security hardening measures have been introduced. Unfortunately, these are

not always part of the shipped object code. We present design and implementation of BinProtect, a

binary rewriting tool, capable of retrospectively protecting binaries, which have not been sufficiently

secured at compile-time. To achieve this, we do not need source code or any additional information.

1. Introduction

The stack buffer overflow, aka. the stack smashing attack [1], presents presumably the

most known and one the most dangerous attacks on software applications. One of the

first worms in history of computer security (the Morris worm [2]) exploited already in

1988 a stack buffer overflow vulnerability. And even today – almost three decades later

– a buffer overflow presents one of the most feared attacks. Figure 1 illustrates the course

of reported buffer overflow vulnerabilities2: Despite the trend concerning buffer

overflows is slowly going back, it remains a common threat.

Figure 1: Buffer overflow related CVE entries, reported since 2008.

Buffer overflow vulnerabilities in general are the result of insufficient array bounds

checks by the compiler or the applications themselves. Precisely this lack enables the

attacker to overwrite function's return addresses and hence take over control of the

associated process and its privileges. To limit this attack vector, special compile- and

link-time security measures have been introduced [3, 4, 5, 6]. Unfortunately, these are

not always part of the shipped object code. To encounter the issue of unprotected and

potentially vulnerable object code, this paper presents BinProtect, a static binary

protection mechanism, applying modifications on the Executable and Linking Format

(ELF) [7] and post link-time object code transformation techniques, provided by

Dyninst [8] and PatchAPI [9]. BinProtect modifies binaries with the objective of

mitigating potential buffer overflow vulnerabilities and consequences by statically

integrating security measures, which have been disabled at compile-time. This way,

BinProtect retrospectively fortifies binaries and hence timely decouples development

and compilation from the security hardening process.

1 Technische Universität München

2 CVE: http://cve.mitre.org/data/downloads/allitems.csv, online Jan 2015.

0

100

200

300

400

500

600

700

2008 2009 2010 2011 2012 2013 2014

N
r

o
f

O
cc

u
re

n
ce

s CVE: Buffer Over/Underflow

Retrospective Protection utilizing Binary Rewriting

2 14. Deutscher IT-Sicherheitskongress des BSI

The paper is outlined as follows: Section 2 shortly relates BinProtect to similar work.

Section 3 introduces general security mechanisms, enabled by the compiler and partly

enforced by the Linux kernel. Inspired by the presented security mechanisms, section 4

and 5 outline the design and implementation details of their retrospective incorporation

into binaries as it is done by BinProtect. We evaluate our prototype in section 6 and

finally conclude this paper with references to future work in section 7.

2. Related Work

A binary rewriting Return Address Defense (RAD) has been presented by Prasad and

Chiueh [10]. RAD introduces a binary rewriting engine that retrospectively fortifies

binary objects for Windows platforms. Similar to BinProtect, RAD utilizes a shadow

stack to temporarily store return addresses of stack frames at function entry and match

these values with actual return addresses at function exit. In contrast to BinProtect, RAD

is restricted to mitigation of buffer overflow vulnerabilities on the stack.

SecGOT [11] randomizes the address of the Global Offset Table (GOT) at load-time

and hence decreases the chances of GOT entry modifications. BinProtect, on the other

hand, tries to completely eliminate the possibility of GOT tampering by preventing the

lazy binding mechanism of the dynamic linker and marking the GOT as read-only.

In their paper, Bernat and Miller present capabilities of PatchAPI [9] by closing three

vulnerabilities in a running Apache server. Our implementation utilizes PatchAPI but in

contrast to the prototype presented by Bernat and Miller, we do not concentrate on

already reported vulnerabilities but rather fortify binaries in a prophylactic manner.

3. Binary Protection

For buffer overflow attacks to be successful, several conditions must be met: First, an

attacker requires the presence of vulnerabilities. Second, he needs to modify control

flow structures. Finally, to take over control, an attacker must locate and execute

previously injected malicious code. Aiming at prevention of the upper conditions to

become true, this section presents core methodologies that may be enabled by the GNU

Compiler Collection (GCC) and partly enforced by the Linux kernel. These

methodologies present fundamental concepts, which, if not available, are retrospectively

integrated into binary objects by BinProtect as discussed in section 4 and 5.

3.1 Execution Prevention: NX-Bit

In general, every ELF segment that can be written to at run-time presents a

potential vulnerability. One cannot rule out that an attacker may place malicious

code or data into one of the writable memory regions (usually part of data

segment) and hence influence the process for his benefit. Naturally, to preserve

modern program compatibility, it is not always feasible to prohibit execution

within the entire data segment3. For instance, applications and libraries utilizing

certain programming constructs, such as dynamic code generation, may require

3 Former Unix and Windows systems utilized segment-wide access permissions, strictly separating executable code from

writable data and stack segment.

Retrospective Protection utilizing Binary Rewriting

14. Deutscher IT-Sicherheitskongress des BSI 3

the data segment to be executable. However, the stack segment certainly should

be protected from malicious code execution. To counter buffer overflow attacks,

attempting to execute malicious code on the stack, AMD introduced a memory

execution prevention technology: The No eXecute (NX) bit. In contrast to coarse-

grained and mostly inflexible protection provided by segmentation, the NX-bit

enables fine-granular execution prevention on a per page basis. Thus, page table

entries associated with the stack segment may be marked as non-executable. GCC

achieves just that by advising the linker with the option –z noexecstack to insert

the program header PT_GNU_STACK into the ELF file, indicating a non-

executable stack. Yet, in special cases, both GCC and Linux require the stack to

be executable: Former Linux kernels handle signals directly on the stack and

GCC requires an executable stack within the context of nested functions. In

addition, in case the dynamic linker4 determines that one of the Dynamic Shared

Objects (DSO) requires an executable stack, it will ignore permissions provided

by the PT_GNU_STACK program header and enable its execution.

3.2 Stack Protection

There exist two types of stack overflow protection mechanisms: stack overflow

protection based on bounds checking and integrity checking. Bounds checking

approaches try to completely eliminate the issue of buffer overflows by tackling

the problem by its source: These approaches try to prevent buffer overflows by

implementing a mechanism, which checks the bounds of arrays, whenever they

are accessed. This check can be a part of the compiler [12] or the application

itself. However, because of potential dramatic performance degradation and

compatibility preserving issues, bounds checking approaches are not considered

very practical. Integrity checking based mechanisms, on the other hand, provide

the possibility to detect compromised activation records (stack frames) by either

inserting a terminator value, which is referred to as canary, directly into the stack

frame [3], or saving the associated return address within a dedicated memory

region [4, 6, 10]. In both cases, the integrity of activation records is validated by

checking the canary or the redundantly stored return address with the associated

value on the stack. In case the value was changed, the integrity of the associated

activation record has been compromised. GCC enforces stack protection with -

fstack-protector(-all|-strong) flags implementing a canary-based approach.

3.3 Standard C Library Consolidation

Besides the lack of array bounds checking mechanisms in languages, such as C

and C++, the risk of a potential buffer overflow vulnerability arises when using

certain functions provided by the standard C library (libc). Functions, such as

strcpy(), gets(), sprintf(), and more, are classified as unsafe and rely on the

programmer to make sure that they do not fill buffers beyond their bounds. To

mitigate this risk, Libsafe [9] has been introduced as a layer between the binary

4 The dynamic linker, also referred to as the dynamic loader, is responsible for making the program ready for execution. It is

implemented as a shared object so that it may be shared between ELF files.

Retrospective Protection utilizing Binary Rewriting

4 14. Deutscher IT-Sicherheitskongress des BSI

and the dynamically linked standard C library. This layer comprises wrappers

being able to intercept and harden calls to unsafe libc functions.

Similar to Libsafe, the GCC compiler, supplies the flag –D_FORTIFY_SOURCE

that performs bounds checks on arrays and pointer references in connection with

a number of unsafe libc functions. The GCC compiler benefits from the fact of

having sufficient information to perform code modifications at compile-time and

hence, in contrast to Libsafe, hardens calls to the libc not only when it is

dynamically but as well statically linked against the binary object to be protected.

3.4 Global Offset Table Protection

Position Independent Code (PIC) and globally shared libraries introduce an

indirection step, required to access the Dynamically Shared Objects (DSO). In

contrast to the earlier concept of load-time relocation of shared libraries [13],

Position Independent Code utilizes a Global Offset Table [13], containing

pointers to global objects. This way, instead of relocating every reference to a

shared object within the .text segment, PIC limits the amount of relocations to the

number of entries within the GOT. At compile-time, addresses of shared objects

are unknown and hence they need to be resolved or relocated by the dynamic

linker at load- or run-time. Relocations, specifying memory addresses to be

modified, are announced within the sections .rel.dyn and .rel.plt of the ELF file.

Thus, the dynamic linker is able to identify memory addresses to be updated with

addresses to the particular DSOs. Inside the ELF file, the GOT is usually

distributed across the sections .got and .got.plt, both residing at fixed offsets

within the .data segment. The section .got contains references to global data to

be relocated at load-time, whereas the section .got.plt comprises references to

global position independent functions to be relocated at run-time. To reduce

overhead at program startup, external functions are not immediately relocated.

Ergo, an additional table is incorporated into the .text segment of the ELF file:

The Procedure Linkage Table (PLT). The PLT consists of trampolines to .got.plt

entries, containing addresses of external functions. The PLT allows the dynamic

linker not to relocate external functions until they are called for the first time.

This process of delayed address resolution is referred to as lazy binding.

Since the dynamic linker updates the .got.plt part of the GOT at run-time, the

associated segment needs to remain writable and hence vulnerable: A potential

attacker may manipulate the process' control flow by modifying the GOT table

entries. The same applies to entries of the sections .init_array, .fini_array etc.,

containing addresses of functions to be executed at program startup and end. To

reduce the attack vector, GCC offers the RELRO mechanism making the linker

mark the above listed sections as read-only after load-time relocations have been

performed. The linker options -Wl,-z,relro and -Wl,-z,relro,-z,now distinguish

between partial and full RELRO. Partial RELRO makes the linker arrange the

sections listed above that are populated at load-time in a way that the dynamic

linker may subsequently mark the associated pages as read-only. The part of the

data segment, whose permissions are changed in this way, is specified by the

Retrospective Protection utilizing Binary Rewriting

14. Deutscher IT-Sicherheitskongress des BSI 5

information held within the PT_GNU_RELRO program header. Nonetheless,

because the .got.plt is bound lazily, it remains writable at run-time. In contrast,

full RELRO resolves all DSOs at load-time. It therefore arranges the sections in

a way that the entire GOT may be marked as read-only.

4. Design of BinProtect

The past has shown that the development of highly secure systems is very hard. Security

hardening measures need to be utilized in every abstraction layer beginning from the

logic and circuit design to hardware architecture and software applications. Security

flaws in one of the abstraction layers has the potential to shatter the security of others.

The idea behind BinProtect is to reduce the possibility of a successful attack on software

applications. BinProtect allows to inject security hardening mechanisms into weakly

protected object-files compiled for Linux platforms, to enable similar protection as

provided by modern compilers. Individual mechanisms that are presented in section 3

may be retrospectively incorporated into shipped applications. To achieve this, our

prototype classifies the presented hardening measures based on two binary

transformation concepts required for their implementation: binary editing and ELF

transformation. Both, the classification of the enforced protection mechanisms and the

associated binary transformation methodologies are shortly described in the following.

4.1 Binary Editing

BinProtect applies static object code modification techniques, utilizing

capabilities provided by the analysis and instrumentation framework Dyninst [8]

and the binary code patching library PatchAPI [9]. The comprehensive static

analysis of Dyninst allows a precise deduction of function and control flow from

binaries without the need for any debugging information – even in stripped and

highly optimized form [9]. PatchAPI utilizes the gathered static analysis

information to perform fine granular object code transformations. In addition,

PatchAPI introduces the concept of structured binary editing [9], comprising a

transformation algebra to ensure validity of the instantiated binaries. This

technique views the binary from a higher, more abstract level: The binary is not

considered any more as a collection of subsequent instructions but as a flow of

basic blocks interconnected by edges in form of a Control Flow Graph (CFG).

Thus, transformations of binaries are performed on the CFG level. To preserve

structural validity of binaries, Bernat and Miller introduce constraints on CFG

transformations in form of a transformation algebra [9]. The CFG transformation

algebra transforms the underlying control flow of the associated binary, and

allows to insert so called snippets in form of a special abstract syntax language

or raw binary code into the basic blocks of the previously transformed CFG. This

way, the original binary may be extended and its control flow transformed, while

simultaneously preserving its validity. Based on these concepts, BinProtect

rewrites binaries to integrate mechanisms, required to protect the stack and fortify

calls to insecure functions of libc, as described in sections 3.2 and 3.3.

Retrospective Protection utilizing Binary Rewriting

6 14. Deutscher IT-Sicherheitskongress des BSI

4.1.1. Standard C Library Consolidation

BinProtect provides safe versions of the known set of unsafe standard C library

functions and rewrites the binary in a way that all calls to unsafe functions in

question are intercepted. Therefore, it needs to distinguish between whether the

libc has been statically or dynamically linked against the binary to be protected

and modify the binary accordingly. For this, BinProtect applies Dyninst's binary

rewriting capabilities. Hence, the modified binary obtains hardened calls to both

dynamically and statically linked standard C library functions. Similarly to

Libsafe [6], for the implementation of the unsafe standard C library functions,

our idea is to associate buffers with stack frames and make sure that they do not

spill over return addresses. Thus, control flow information remains protected but

general buffer overflows are not entirely eliminated.

4.1.2. Stack Protection

BinProtect collects sufficient static function and control flow information from

binaries by means of extensive static binary analysis capabilities of the

underlying framework Dyninst. Based on the statically gathered information,

BinProtect extracts functions that are not part of shared libraries and subsequently

performs static object code modification in respect to structural validity of the

binary object by applying the transformation algebra introduced by PatchAPI [9].

The general idea behind the stack protection mechanism of BinProtect is to

modify the extracted functions so that they become capable of performing

integrity checks of the associated activation records at run-time. As a result – in

contrast to GCC -fstack-protector variants, which implement a canary-based

approach – the binary becomes able to check integrity of its activation records by

utilizing a shadow stack mechanism: Therefore, the binary stores return addresses

of active functions within a dedicated memory region during the function's

prologue and matches the associated return addresses with their copies on the

shadow stack during the function's epilogue. Thus, BinProtect detects stack

buffer overflows and makes sure that the attacker does not take over control.

4.2 ELF Transformation

The Executable and Linking Format [7] defines a common object file format used

in Unix-based operating systems for executable-, relocatable-, and shared object

files. The ELF header acts as a guide, helping to locate essential components

within the rest of the file. An ELF file may further comprise a section header

table and a program header table, representing two different views on the ELF

file: The linking- and the program execution view. The section header table keeps

track of all sections containing essential data required for the process of linking.

The program header table distributes all sections across segments, which are

loaded into memory considering specified permissions. Thus, the ELF format

determines the way how the file is handled at load- and run-time. This means,

modifications of ELF files directly influence its future behavior. The ELF format

is often abused for malicious purposes. Both, kernel and user space applications

may suffer from so called ELF infections [14, 15], which hide inside proper

Retrospective Protection utilizing Binary Rewriting

14. Deutscher IT-Sicherheitskongress des BSI 7

applications abusing their hospitality. Within the context of BinProtect, we apply

such ELF infections or rather transformations with the purpose of security

hardening binaries by mechanisms, which prevent execution on the stack and

provide protection of the entire GOT, according to sections 3.1 and 3.4. The

following presents ELF transformations required to incorporate these protections.

4.2.1. Execution Prevention: NX-Bit

Our idea is to modify ELF files in a way that the kernel (assuming sufficient

support) will mark pages of the stack segment as non-executable. Therefore, we

insert the program header of type PT_GNU_STACK into ELF executables in case

of its absence or otherwise make sure it has no execution permissions. This does

not alter the process' behavior but cause the kernel to mark the affected pages as

non-executable. This technique does not directly prevent or recognize buffer

overflows but rather alleviates their effects: Execution attempts of previously

injected malicious code on the stack will be aborted. As a consequence, a number

of stack buffer overflow vulnerabilities may be mitigated. Depending on the

policy of the underlying operating system, heap-based buffer overflows may as

well be eliminated respectively. Attacks, such as return-to-libc [16], however,

remain possible. Permissions specified by the PT_GNU_STACK header are

ignored if the binary makes use of libraries requiring an executable stack.

However, programs that make use of an executable stack must skip this step.

4.2.2. Global Offset Table Protection

Partial RELRO and hence lazy binding of DSOs is considered as default in the

today's GNU linker implementation5. However, as presented in section 3.4, the

.got.plt part of the Global Offset Table is vulnerable (Figure 3). To retrospectively

utilize full RELRO, the entire GOT should be marked as read-only. To achieve

this, first, the lazy binding mechanism must be deactivated, so that all relocations

are performed at load-time. Considering that memory permissions apply on a per

page basis, it must be assured that the .got.plt section is located in a dedicated

part of a segment that may be marked as read-only without compromising the

remaining .data segment. Finally, to complete the protection of the GOT, the

function _init() needs to be modified so that it becomes responsible for altering

permissions of the dedicated segment to read-only right after it has been

populated and before the function main() has been initiated. Since all DSOs are

resolved at load-time, this technique sacrifices startup time of programs in order

to make sure that GOT tampering attacks are entirely eliminated.

5. Implementation

BinProtect presents a tool capable of retrospectively hardening security of programs in

form of binary objects. Unprotected binaries should obtain protection similar to

5 The GNU linker: http://unixhelp.ed.ac.uk/CGI/man-cgi?ld, online Jan 2015.

Retrospective Protection utilizing Binary Rewriting

8 14. Deutscher IT-Sicherheitskongress des BSI

mechanisms provided by modern compilers, as described in section 3. This section

outlines implementation details of the techniques that are being shown in section 4.

5.1 Execution Prevention: NX-Bit

By default, the Linux kernel allocates a stack segment with execution

permissions, in case the target ELF file misses a PT_GNU_STACK program

header. To prevent execution on the stack segment, BinProtect first checks the

presence of this header and makes sure that it does not contain the execution

permission. In case the ELF file lacks the PT_GNU_STACK program header,

BinProtect incorporates it into the ELF file to achieve the desired behavior.

5.2 Stack Protection

BinProtect transforms binaries in a way that they become able to check integrity

of their activation records by means of a shadow stack mechanism that is

incorporated into binaries. A shadow stack can be understood as an abstract data

structure representing a collection of data, managed in a Last-In-First-Out (LIFO)

manner. It allocates space for sensitive data within a separate memory region,

which is maintained by a dedicated shadow stack pointer. The shadow stack

mechanism maintains return addresses of currently active functions. After

modification, the hardened functions become able to protect their return address

as part of the function's prologue. The return address is stored on the shadow

stack before any space for local variables is allocated on the stack and any

function related instruction is executed. Before function return, as part of the

epilogue, the modified functions perform integrity checks by comparing their

return address with its copy on the shadow stack.

Figure 2: Basic block including initial prologue or epilogue information is transformed.

Affected information is encapsulated within its own basic block, and subsequently

exchanged with a new basic block.

Basic Block Transformation: BinProtect, in combination with PatchAPI,

considers binaries as a flow of basic blocks interconnected by edges in form of a

CFG. Since the size of basic blocks is determined by control flow properties of

the code, the function's prologue and epilogue often present only a part of a basic

block belonging to a particular function. To modify or replace a function's

prologue or epilogue on the basis of control flow information, BinProtect first

Retrospective Protection utilizing Binary Rewriting

14. Deutscher IT-Sicherheitskongress des BSI 9

localizes and encapsulates the affected part of the basic block. This is performed

with help of information determined by common calling conventions. Calling

conventions present a set of steps to be performed when calling and returning

from functions. Thus, the tasks to be performed at function calls are clearly

distributed among the caller and callee. Conventions to be performed by the

callee, are usually performed within function's prologue and epilogue. With this

information, BinProtect localizes the start and end of both prologue and epilogue

within the associated basic block. After these locations have been determined,

BinProtect transforms the basic blocks to enable code injection (Figure 2).

Code Injection: After the CFG transformations, presented within the previous

step, the prologue or epilogue information has been extracted and encapsulated

within its own basic block, as presented in Figure 2. The next step performed by

BinProtect is the injection of raw binary code containing modified prologue or

epilogue information. To achieve this, BinProtect creates a new basic block,

inserts code into this basic block, and finally redirects edges previously directed

to and from the initial prologue or epilogue to the created basic block. Figure 2

presents the steps performed by BinProtect to inject new prologue and epilogue

information into the binary. The modified prologue becomes responsible for

saving the function's return address within the shadow stack. Respectively, the

modified epilogue contains instructions to perform integrity checks.

5.3 Standard C Library Consolidation

BinProtect intercepts and redirects calls to unsafe standard C library functions.

Instead, equally named wrapper functions are executed. These are provided in

form of a shared library. The wrapper functions are basically integrated as an

intermediate layer between the binary itself and libc. Therefore, our prototype

first determines whether libc has been statically or dynamically linked against the

binary in question. This is done by means of the static analysis capabilities of

Dyninst. In case libc has been statically linked against the target application, our

prototype injects safe wrapper implementations directly into the binary. For this,

Dyninst extracts wrapper raw binary code information from the provided shared

object file and subsequently injects the gathered information into the ELF file to

be modified. Dyninst prepares a new section, containing the injected code and

assigns it to a new code segment of the target ELF file. Thus, the new code

segment may be loaded into memory at program start. To allow the wrappers to

call functions of further libraries, Dyninst integrates additional library

dependencies into the ELF file and appropriately modifies the sections required

for dynamic relocation. Finally, to redirect calls towards integrated wrappers,

trampolines are injected in place of the original function's first instruction.

In case the libc has been dynamically linked against the target ELF file, our

prototype inserts a dependency to the shared library containing safe wrapper

implementations. To make the dynamic linker populate the GOT with addresses

to our wrapper functions, BinProtect makes the dynamic linker load the provided

library before libc. The ELF format determines the order of the dynamically

Retrospective Protection utilizing Binary Rewriting

10 14. Deutscher IT-Sicherheitskongress des BSI

linked libraries to be loaded within the section .dynamic. This means, in order to

intercept specific functions of libc, BinProtect swaps the library dependency

entries in favor of our implementation. In addition, to allow the intercepted

library functions call the original functions, BinProtect statically rewrites the

function _init() of the original binary in a way that it resolves the affected symbol

names and stores the associated libc function addresses within static variables

before execution of the function main() is initiated.

5.4 Global Offset Table Protection

The part of the .data segment, which maintains addresses of functions and DSOs,

may be potentially abused for malicious purposes if not marked as read-only.

Partial RELRO reduces the attack vector by making the dynamic linker mark the

affected part of the .data segment as read-only after it has completed relocations

at load-time. The exact position and size of the affected memory region is stated

within the ELF program header PT_GNU_RELRO. As discussed in section 3.1,

the NX-bit protects execution on a per page basis. This implies that the linker is

able to safely mark relocations as read-only only if they precede the page

boundary to the .data section. Thus, in case partial RELRO has been activated,

the linker arranges the .data segment (which comprises among others the sections

.init_array, .fini_array, .got, .got.plt, .data, .bss, etc.) in such a way that the

section .got is aligned with the end of a page that is positioned adjacently to the

page containing the .data section. This is shown in Figure 3. Hence, the memory

region containing relocations may be safely marked as read-only, whereas

permissions of the section .got.plt, being located in the same page as the .data

section, may not be changed as the adjacent .data section is part of the same page.

To make the program benefit from security advantages provided by the full

RELRO mechanism, BinProtect performs the following steps:

Figure 3: For partial RELRO, the linker distributes sections across different pages so

that the .got.plt must remain writable after dynamic relocations have been performed.

Eager binding: The section .dynamic maintains information required during the

process of dynamic linking. To make the dynamic linker perform all relocations

at load-time, BinProtect integrates entries of type DT_BIND_NOW and

DT_FLAGS_1 into the .dynamic section of the original ELF file.

Relocation of .got.plt: To safely mark the entire GOT as read-only without

affecting the remaining .data segment, BinProtect relocates the section .got.plt to

a dedicated segment that is incorporated into the ELF file. This is done by

specifying the virtual address of the .got.plt section to be within the range of the

integrated segment. This address needs to be passed to the dynamic linker by

adopting the .dynamic section entry of the type DT_PLTGOT. This way, the

dynamic linker can find the relocated .got.plt section. In addition, to make sure

that symbols of shared library objects are correctly relocated, offsets of entries

Retrospective Protection utilizing Binary Rewriting

14. Deutscher IT-Sicherheitskongress des BSI 11

inside .rel.plt need to be adopted. Finally, to retain original functionality of the

application, our prototype redirects pointers of the PLT to the relocated .got.plt.

Relocation read-only: The transformed application needs to be able to mark the

entries inside .got.plt as read-only. To achieve this, BinProtect extends the

function _init() in the same way as presented in section 5.3. The function _init()

utilizes mprotect() to change permissions of the dedicated segment comprising

the .got.plt at run-time and hence completes the protection of the GOT.

6. Evaluation

We evaluated BinProtect by effectively eliminating the effects of a security bug, which

we have implemented for testing purposes into a local version of the GNU tar archiving

utility. We demonstrate the potential of BinProtect by showing how BinProtect mitigates

the security impacts of the bug. Also, to make concise deductions about the additional

overhead induced by BinProtect, we assess measurements of the code size and execution

time of three retrospectively hardened computational intensive applications.

The security bug exposes the unsafe libc function strcpy(), which allows to spill over

bounds of buffers. Consequently, the attacker is able to inject and execute malicious

code on the stack or heap by adapting the function’s control flow structures. In addition,

the bug enables a direct manipulation of GOT entries. The protection mechanisms of

BinProtect successfully apply on different levels: The NX bit prevents execution on the

stack and heap. Full RELRO hinders the attacker from modifying GOT entries. The

stack protection detects return address corruptions. And finally, BinProtect intercepts

the function strcpy() and prevents modifications of the function’s control flow in the

first place. As a result, BinProtect completely eliminates the security impacts of the bug.

Binary Hardened functions Size increase Time increase

GNU tar, v1.27.1 807 (of 807) 38.7 % 4,7 %

Gzip, v1.6 67 (of 67) 86.3 % 2.3 %

Bzip2, v1.0.6 36 (of 36) 137.5 % 3.5 %

Table 1: Size and execution time increase after applications have been processed by BinProtect.

Measurements have been taken of presented applications compressing 500 MB of data.

BinProtect adds overhead concerning code size and execution time to the original

binaries. Table 1 illustrates the number of hardened functions and the resulted increase

in code size and average execution time of three archiving utilities. Therefore, we

collected 20 time measurements of each application by compressing data of 500 MB in

size. The stated increase in size is the result of the performed binary transformations: To

enable object code modifications of variable size, Dyninst extracts the targeted parts of

the code and copies them to a separate location in the binary. Trampoline-based code

constructs are inserted into the original code regions in order to access the applied

modifications. Thus, the original code remains in the binary and hence blows up its size.

This may present an issue for systems with limited resources. The increase in execution

time, however, may be neglected within the context of general purpose applications.

Retrospective Protection utilizing Binary Rewriting

12 14. Deutscher IT-Sicherheitskongress des BSI

7. Outlook and Conclusion

We have presented BinProtect, a static binary hardening tool, capable of mitigating

potential buffer overflow vulnerabilities. This is achieved by means of cutting-edge

static analysis and binary rewriting capabilities of Dyninst and PatchAPI. BinProtect

performs instruction level binary modification based on function and control flow

information, without the need for source code or debugging information. Applied binary

transformations preserve structural validity of resulting binaries by utilizing PatchAPI's

CFG transformation algebra. In addition, BinProtect directly modifies the ELF structure

to utilize run-time security mechanisms that are enforced by both, the dynamic linker

and Linux kernel. Concluding, our evaluation shows effective protection against a

security bug, inserted into a copy of the tar archiving tool, with negligible time overhead.

References

[1] A. One, "Smashing the stack for fun and profit," Phrack magazine, vol. 49, no. 14, 1996.

[2] H. Orman, "The Morris worm: a fifteen-year perspective," in IEEE Security & Privacy, 2003.

[3] P. Wagle and C. Cowan, "Stackguard: Simple stack smash protection for gcc," in Proceedings of

the GCC Developers Summit, Citeseer, 2003, pp. 243-255.

[4] Stack Shield, "A stack smashing technique protection tool for Linux," 2011. [Online]. Available:

http://www.angelfire.com/sk/stackshield/. [Accessed Jan 2015].

[5] A. van de Ven, "New security enhancements in Red Hat Enterprise Linux v. 3, update 3,"

Raleigh, North Carolina, USA: Red Hat, 2004.

[6] A. Baratloo, N. Singh, and T. K. Tsai, "Transparent Run-Time Defense Against Stack-Smashing

Attacks," USENIX Annual Technical Conference, General Track, pp. 251--262, 2000.

[7] TIS Comittee, "Tool Interface Standard (TIS) Executable and Linking Format (ELF)

Specification Version 1.2," TIS Committee, 1995.

[8] B. Buck and J. K. Hollingsworth, "An API for runtime code patching," International Journal of

High Performance Computing Applications, vol. 14, no. 4, pp. 317-329, 2000.

[9] A. R. Bernat and B. P. Miller, "Structured binary editing with a cfg transformation algebra,"

Reverse Engineering (WCRE), 2012 19th Working Conference on, pp. 9--18, 2012.

[10] M. Prasad and T. C. Chiueh, "A Binary Rewriting Defense Against Stack based Buffer Overflow

Attacks," USENIX Annual Technical Conference, General Track, pp. 211--224, 2003.

[11] C. Zhang, L. Duan, T. Wei, and W. Zou, "SecGOT: Secure Global Offset Tables in ELF

Executables," Proceedings of the 2nd International Conference on Computer Science and

Electronics Engineering, 2013.

[12] R. Jones and P. Kelly, "Documentation for the proect: bounds checking for C," [Online].

Available: http://www.doc.ic.ac.uk/~phjk/BoundsChecking.html. [Accessed Jan 2015].

[13] Levine, John R., Linkers & Loaders, San Francisco: Morgan Kaufmann Publishers, 1999.

[14] Styx^, "Infecting loadable kernel modules," Phrack magazine, vol. 68, no. 11, 2012.

[15] S. Cesare, "Shared library call redirection via ELF PLT infection," Phrack magazine, vol. 56,

no. 7, 2000.

[16] S. Designer, "return-to-libc attack," Bugtraq, Aug, 1997.

