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Abstract. Insufficiently protected mobile devices present an ubiquitous
threat. Due to severe hardware constraints, such as limited printed cir-
cuit board area, hardware-based security as proposed by the Trusted
Computing Group is usually not part of mobile devices, yet. We present
the design and implementation of seTPM, a secure element based TPM,
utilizing Java Card technology. seTPM establishes trust in mobile devices
by enabling Trusted Computing based integrity measurement services,
such as IMA for Linux. Our prototype emulates TPM functionality on
a GlobalPlatform secure element which allows seamless integration into
the Trusted Software Stack of Linux-based mobile operating systems like
Android. With our work, we provide a solution to run Trusted Comput-
ing based security protocols while supplying a similar security level as
provided by hardware TPM chips. In addition, due to the flexible design
of the seTPM, we further increase the security level as we are able to
selectively replace the outdated SHA-1 hash algorithm of TPM 1.2 spec-
ification by the present Keccak algorithm. Further, our architecture
comprises hybrid support for the TPM 1.2 and TPM 2.0 specifications
to simplify the transition towards the TPM 2.0 standard.

1 Introduction

The shift from the era of primitive mobile devices to full-blown general purpose
smart phones significantly affected the importance of mobile security. Becom-
ing omnipresent, the mobile market turned out to be very attractive for cyber-
criminals: The continuously rising computing power, management of personal
information, as well as the potential interoperability with corporate networks
and services present an ideal base for various cyber-attacks. Software security
hardening solutions, such as antivirus products, try to mitigate the stated issues.
However, there is no guarantee that software-based security hardening measures
themselves cannot become victims of cyber-attacks and thus be intentionally
misused by malware. Because of this, software-based security hardening solu-
tions alone cannot always provide trust.



For this purpose, hardware supported security hardening measures are needed.
Therefore, modern embedded systems rely on the concepts of Trusted Com-
puting [1] integrated into isolated, hardware supported, environments such as
Trusted Platform Modules (TPMs) [2, 3] and Trusted Execution Environments
(TEEs) [4, 5]. A TPM presents a dedicated microprocessor that is utilized to
establish trust between communication partners. It comprises secure storage ca-
pabilities for cryptographic keys and cryptographic co-processors to provide reli-
able integrity measurement and remote attestation services. On the other hand,
a TEE is usually part of the main processor and provides an isolated execution
environment for Trusted Applications (TAs), which can be executed concurrently
to a rich operating system. The Trusted Computing Group (TCG) and the Glob-
alPlatform jointly elaborated a TPM 2.0 Mobile architecture [6] that can be
implemented as a TA [7]. However, TEE-based solutions cannot provide the
same isolation as TPMs, e.g., concerning side-channel vulnerabilities. Although
a dedicated Mobile Trusted Module (MTM) [8] has been specified, it has not yet
been accepted within the world of mobile devices. One reason for this is that
mobile devices suffer from severe hardware constraints, such as printed circuit
board area. Another reason is that usually a dedicated security chip is already
deployed in most modern smartphones for other purposes like secure payment.

Our work introduces a TPM implementation for GlobalPlatform specified
secure elements (SEs) providing flexibility of software- and tamper resistance of
hardware supported approaches without the need for additional circuit area. We
based our work on the software TPM emulator for Linux [9]. In contrast to this
software-only solution, our implementation has been designed to run on Java
Card technology [10] based SEs. In short, the seTPM presents a highly portable
and tamper resistant TPM emulator that can be easily integrated in modern
mobile architectures. Our contributions comprise the following features:

– The seTPM extends the idea of a portable TPM emulator in [9] in a way
that it becomes applicable to virtually every platform being able to interface
with GlobalPlatform specified secure elements.

– The seTPM software architecture enables transparent integration into Trusted
Computing applications like Integrity Measurement Architecture (IMA) [11].

– We show that the seTPM can be functionally extended according to individ-
ual requirements. Our implementation extends the TPM 1.2 specification [12]
on demand, by exchanging the SHA-1 with the Keccak [13] hash algorithm.

– We provide a Keccak implementation for Java Card to further increase the
security level compared to modern hardware TPM chips.

– We present an architecture of a hybrid system combining the TPM 1.2 and
TPM 2.0 standards.

– Further security enhancement is discussed by facing hardware reset attacks.

The rest of this paper is organized as follows: After providing related work
in Section 2, we present background information in Section 3. The architecture
and design of seTPM is described in Section 4. We discuss and evaluate our
implementation in Section 5. Finally, we conclude the paper in Section 6.



2 Related Work

Strasser and Stamer [9] introduce a software-based TPM emulator. Their im-
plementation presents a Unix-platform independent realization of the TPM 1.2
specification [12] in software, providing a perfectly suitable environment for test-
ing, research, and educational purposes. seTPM adopts the concepts of the TPM
emulator within the context of Java Card technology based SEs. Thus, seTPM
extends capabilities of the TPM emulator by providing a hardware supported,
isolated, execution environment.

Costan et al. [14] introduce a concept called Trusted Execution Module (TEM),
providing a secure and tamper resistant execution environment in form of a
Java Card applet. The execution environment of a TEM comprises a virtual ma-
chine executing user provided execution primitives, called closures. In contrast
to seTPM, TEM does not focus on system integrity measurement and attesta-
tion capabilities but rather provides a general-purpose execution environment
that is similar to TEEs of modern processors.

Portable TPM (PTM) has been presented by Zhang et al. [15]. Similar to
seTPM, PTM has been implemented for Java Cards providing TPM-like func-
tionality. Unlike seTPM, Zhang et al. follow a user centric approach by binding
the PTM to users. This concept establishes trust between users and remote chal-
lengers and provides the flexibility of being able to be utilized across different
platforms. However, the PTM requires migratable Storage- and Attestation Root
Keys, managed by additional TPMs on the respective platforms.

Within the context of multi-application smartcard environments, Akram et
al. [16] present the Trusted Environment and Execution Manager (TEM) that
acts as a TPM for smartcards. Hence, TEM introduces the concepts of Trusted
Computing directly into secure elements ensuring trustworthiness of the individ-
ual smart card applications.

With vTPM, Berger et al. [17] integrate their own TPM implementation into
a Xen-hypervisor providing a software-based trusted environment for virtual ma-
chines. This way, Berger et al. establish a flexible multi-context TPM, providing
TPM functionality to multiple virtualized environments. Similar to vTPM, given
sufficient memory resources, the isolation capabilities of Java Card applets in SEs
may manage multiple instances of seTPM, providing similar functionality.

3 Background

To maintain the property of trust, the TCG defines a Trusted Computing Base
(TCB) to be a part of the system. The TCB comprises so called roots of trust
that are considered as inherently trustworthy: These are the Root of Trust for
Measurement (RTM), Root of Trust for Storage (RTS) and Root of Trust for
Reporting (RTR). Usually RTS and RTR are represented by a TPM. A TPM
symbolizes a trust anchor simplifying detection of potentially malicious code
and protection of cryptographic keys from physical theft and distribution.



3.1 TCG Software Architecture

The TCG software architecture provides a modular design that distributes tasks
across layers in user- and kernel space (Figure 1). Every layer of the TCG ar-
chitecture provides an abstract interface towards its upper layer. The user space
components, also referred to as the TCG Software Stack (TSS), comprise the
TCG Device Driver Library (TDDL), TCG Software Stack Core Services (TCS),
TCG Service Provider (TSP), and an application making use of these layers. In
short, the TPM device driver establishes a communication with the TPM, pro-
viding an interface towards the user space layers. The TDDL layer maintains a
uniform and operating system independent interface towards the TCS layer. The
TCS layer yields core services, such as key-, credential- and context-management.
The TSP layer comprises a C-library, utilized by Trusted Computing applica-
tions. On Linux-based devices, the open source TrouSerS library [18] provides
the TSS of the platform, which is accessed through the tcsd user space daemon.
As shown in Figure 1, the user space layers of the TSS-2.0 differ entirely from
its TSS-1.2 counterpart. The System API (SAPI) replaces the TDDL and thus
directly interfaces and communicates with the TPM device driver via raw byte
commands. The upper layers – Feature API and Extended System API (ESAPI)
– serve as abstraction layers. The Resource Manger, TPM Access Broker (TAB),
and TPM Command Transmission Interface (TCTI) layers are optional, trans-
parent, layers providing further features such as the scheduling of multiple TPM
sessions and TPMs in user space. For further reading on TSS-2.0, we refer to [19].

3.2 Java Card Technology

The Java Card technology provides a uniform platform, implemented on vari-
ous SE architectures. Its specification comprises a Java Card Virtual Machine
(JCVM), a Java Card Runtime Environment (JCRE), and a Java Card API [10].
These components represent the actual Java Card platform. The JCVM and
JCRE enable hardware abstraction and provide a universal API for Java Card
applet developers. The communication between the host and the Java Card is
established via a message passing based protocol, exchanging Application Pro-
tocol Data Units (APDU) [20]. An APDU represents a self-contained message
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Figure 1: TCG software interfaces and services to communicate with a TPM-1.2 [1]
and TPM-2.0 [19]. Highlighted layers present modifications of the TCG architecture.



enclosing either command- or response-information. A command APDU com-
prises a header and a body. The header contains information, specifying the
instruction class and type (CLA and INS) and instruction parameters (P1 and
P2). The body of a command APDU indicates the size of the data to follow (Lc)
and the maximum number of bytes of the response APDU to receive (Le). The
Response APDU comprises a body, including the response information, and a
trailer, indicating the status of the processed instruction.

Shareable Interface A Java Card application comprises multiple Java Card
applets associated with a single package. In other words, applets belonging to the
same package share a joint object space, also referred to as a context. The applet
firewall enforced by the JCRE strictly constrains the access to data belonging
to another context. To permit communication and data sharing throughout the
applet firewall and thus between different contexts, applets have to implement
the Shareable interface of the Java Card API. This way, so called server applets
may share selected functionality with chosen client applets from different con-
texts. To acquire access to this functionality an applet has to request a reference
of the particular Shareable Interface Object (SIO) through defined system calls.

4 Architecture and Design of seTPM

The idea behind seTPM is a transparent integration into Trusted Computing
based applications and the ability to functionally extend the emulated TPM
according to individual requirements. These characteristics present an inherent
component of the seTPM architecture. Figure 2 gives an overview of our system
architecture, which integrates Trusted Computing applications into mobile de-
vices using a GlobalPlatform defined secure element, e.g., in form of a microSD
card. Due to its popularity and open source character, our architecture particu-
larly targets mobile devices running the Android operating system. In general,
applications communicate with the seTPM by setting off TPM commands. TPM
commands traverse the entire TSS before they are forwarded by the Data Trans-
fer Management System to the seTPM applets running on the GlobalPlatform
SE. Our architecture introduces a switchable hashing engine allowing to choose
between the SHA-1 and the Keccak algorithm. The Keccak algorithm can
produce hash values of arbitrary sizes, and thus can be seamlessly integrated
into the TPM 1.2 specified protocol. Further, to ease the transition towards the
TPM 2.0 standard, we propose a hybrid system supporting both TPM specifi-
cations by two interacting seTPM applets residing on the same SE and sharing
key resources by means of a server applet.

4.1 Hardware Design

The conceptual hardware design of our project comprises three main compo-
nents: a host, a card acceptance device (CAD), and a secure element. Within the
context of seTPM, the host represents an Android mobile device, such as a smart
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Figure 2: seTPM system architecture

phone or tablet. The employed SE supports Java Card technology with crypto-
graphically relevant functions. The CAD bridges the interface between the host
and SE by transparently forwarding requests and replies in form of APDUs. A
CAD should be seen as a means for the purpose of provisioning a communication
medium and can be realized, e.g., by conventional card readers.

4.2 Software Design

The software design of seTPM has been adopted from the TCG software archi-
tecture [1] being presented in Section 3.1. Along with security aspects, seTPM
has been designed with flexibility concerning the scope of application and ease of
extensibility in mind. To meet these goals, the software architecture of seTPM
is divided into three isolated components, which can be incorporated into TCG-
compliant systems: These comprise a host-side application, a data transfer man-
agement system, and a secure element based Trusted Platform Module. They are
described in detail in the following.

Host-side Application The host-side application basically combines all user
space TCG components, namely the TSS and the actual application making
use of the TSS layers (Figure 1). It is conceivable to extend the TDDL and
the SAPI (TSS 2.0), respectively, in order to preprocess and forward APDUs
to and from the seTPM device driver. This way, the TDDL/SAPI layer would
be able to directly communicate with the seTPM and simultaneously maintain
its initial functionality comprising abstraction of the underlying hardware im-
plementation towards its upper layers. However, the kernel should be able to
start measuring integrity of the underlying system before userspace is initialized
and the associated libraries are loaded. Therefore, we shifted the TCG architec-
ture adjustments to the lower levels residing in kernel space (highlighted layers
in Figure 1). Thus, the initial behavior of the user space components of the
TCG architecture remains unchanged. This allows to transparently incorporate
the seTPM into existing Trusted Computing applications without the need for
additional user space libraries.



Secure Element based Trusted Platform Module Our Java Card technol-
ogy based SE needs to implement the TPM 1.2 [12] and the TPM 2.0 command
specification [21] as two isolated applets, each with its own Application Identifier
(AID). The idea is to share resources, such as Platform Configuration Registers
(PCRs) and root keys, between both instances using the Shareable interface [22]
of the underlying Java Card API, as being discussed in Section 3.2. This inter-
face allows to share objects throughout the applet firewall in form of so called
SIOs. Our server applet manages the creation of and the access to these SIOs. In
terms of compatibility, the size of PCRs must be increased from 20 to 32 bytes.
The lower 20 bytes can be used by the TPM 1.2 protocol whereas the upper 12
bytes are additionally utilized by the TPM 2.0 implementation. Thus, TPM 2.0
compliant integrity measurements utilizing the SHA-256 hash algorithm can be
assured. In short, this approach meets SE related hardware constraints and addi-
tionally allows to support a set of Trusted Computing applications implementing
different TPM protocols. For instance, in the event of a legacy trusted boot pro-
cess, the seTPM may measure integrity and extend its PCR values by applying
the original TPM 1.2 functionality. Further integrity measurements may, how-
ever, appropriately pad and extend the stored 160 bit values by utilizing the
specified SHA-256 hash algorithm. For this, the associated remote attestation
party needs to consider this chain of events or simply maintain valid hash values
to preserve anonymity. In addition, our design implements an explicit hash algo-
rithm switch inside the TPM 1.2 applet. For legacy/backward compatibility or
if not explicitly specified by the host we make use of the SHA-1 algorithm. The
host may issue a switch command to change the hash engine to Keccak at any
time by providing owner credentials. However, in that case, a reset is necessary
to get consistent PCR states.

Data Transfer Management System The data transfer management sys-
tem presents a kernel module in form of a device driver. The general idea is to
enable a communication between the host-side application and seTPM so that
the integrity measurement services provided by seTPM are transparently made
available to both, kernel- and user space applications. As a result, not only user
space applications but also the operating system kernel can perform integrity
measurements, e.g., of kernel modules, security-critical system configuration,
and certain applications, even before user space components have been initial-
ized. The seTPM device driver hides details concerning low level communication
between the host and seTPM. This way, it is possible to communicate with a
particular seTPM via different communication standards, such as PC/SC3.

For the actual communication, we define a protocol that wraps incoming
TPM requests into case-4 command APDU messages, which are then forwarded
to the seTPM (left part of Figure 3). To simplify the interpretation of incoming
APDUs on the seTPM side, individual TPM request meta information fields are
mapped to command APDUs as shown in Table 1. The command APDU entry

3 Personal Computer/Smart Card (PC/SC) specifies the communication between a
host computer and a smartcard.



Table 1: TPM request header to APDU header mapping

APDU header TPM 1.2 TPM 2.0

CLA 0xB0 | CLA xor 0x01

INS TAG[0]

P1 ORDINAL[3] TPM CC[1]

P2 ORDINAL[0] TPM CC[0]

Lc PARAMSIZE[0] | MAX APDU PAYLOAD

Lc, representing APDU size, is limited to min(MAX APDU PAYLOAD, 255) byte.
This limitation is explained by vendor specific maximum APDU sizes of the Java
Card. In case a TPM request exceeds this size, the APDU entry CLA signalizes
data to follow with a set chaining bit – the chaining bit is the least significant
bit of the CLA header entry. Chained TPM requests reuse the header of the first
transmitted command APDU. The end of a TPM request chain is identified by
a clear chaining bit. Besides, only two bytes (MSB and LSB) of ordinals within
TPM requests carry significant information. Thus, remaining bytes are left out
of the mapping, as shown in Table 1. The same applies to TPM 2.0 specified
command codes. Only the first two bytes are relevant as shown in [21]. The
format of TPM responses embedded in response APDU messages is visualized
in the right part of Figure 3. Received response APDU messages contain TPM
responses, which are extracted and subsequently passed to the TDDL/SAPI
layer of the TCG architecture (Figure 1). TPM responses exceeding the limit
of min(MAX APDU PAYLOAD, 256) byte are divided into multiple chained response
APDUs. Chained response APDU messages are detected by analyzing the actual
size of the TPM response embedded within the body of the respective APDU.
In case of a chained response, the data transfer management system needs to
assemble the complete TPM response before forwarding it to the TDDL or the
SAPI layer, respectively.

4.3 Extension of TPM 1.2

The TPM 1.2 specification utilizes the SHA-1 algorithm for hash values and
as part of the Message Authentication Code (MAC) computation. The SHA-1
cryptographic hash algorithm generates 160-bit (i.e. 20 bytes) hash values from
messages of arbitrary sizes. To find a collision using a brute force method, one
would need to calculate hash values of about 280 random messages. However,

CLA INS P1 P2 Lc LeDATA

HEADER BODY

TAG PARAMSIZE ORDINAL/TPM_CC DATA

TPM Request:

Command APDU:

SW2DATA

TRAILERBODY

TAG PARAMSIZE RETURNCODE DATA

TPM Response:
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Figure 3: Integration of TPM requests and extraction of TPM responses from APDUs.



Wang et al. [23] showed that for the SHA-1 algorithm collisions can be found with
complexity of only 269. To increase the collision-resistance of the SHA-1 hash
algorithm and simultaneously to maintain the field lengths of the TPM proto-
col according to the TPM 1.2 specification, our design introduces the Keccak
hash algorithm [13]. The Keccak hash algorithm belongs to the sponge func-
tion family being able to produce hash values of any desired length and is the
algorithm behind SHA-3, the latest successor of SHA-1. Because NIST specified
SHA-3 by limiting arbitrary hash lengths to four values, namely to 224, 256,
384, and 512 bit [24], we decided to utilize the original Keccak algorithm to
generate hashes of 160 bit and simultaneously provide collision-resistance of the
strength of 2160. As specified in [13], the Keccak sponge function makes use of
the parameters Keccak[r,c,d ] with bitrate r, capacity c, and diversifier d [25].
The bitrate r presents the block size, meaning the maximum number of bits that
are processed at every iteration step. The capacity c can be seen as a security
parameter. Keccak claims to be resistant against collision-attacks with com-
plexity of 2c/2 and against preimage-attacks with complexity of 2c although the
output length N may be higher. The diversifier d is meant to make two Kec-
cak instances utilizing equal parameters r and c to produce different results.
Keccak applies so called Keccak-f permutations on its internal state with
the width of b = r + c bit, whereas the state width b is limited to the values
b ∈ {25, 50, 100, 200, 400, 800, 1600}. The state represents a three-dimensional
5 ∗ 5 ∗ w bit array. To achieve best performance, w may be chosen similarly to
the word size on the CPU with w ∈ {1, 2, 4, 8, 16, 32, 64} (i.e. 16 bit CPUs should
use the parameter w = 16). Consequently, seTPM supports Keccak [80,320,0 ],
providing maximum security for the resulting N = 160 bit hash values.

4.4 Countering Reset Attacks

Earlier TPM 1.1b [26] specified chips were prone to so called reset attacks [27].
In this scenario, the weakest link was given by the Low Pin Count (LPC) bus
connecting TPMs with the southbridge of their host system. Kauer [27] showed
that a TPM can be reset through an induction of the LRESET# signal with-
out restarting the system. A subsequent invocation of TPM Startup(TPM CLEAR)

puts the TPM and its PCRs in a default state. Ergo, an attacker can extend the
PCRs to reproduce a consistent state despite system integrity manipulations.

The TPM 1.2 specification approached this issue by introducing the concept
of Locality. Apart from Legacy Locality, this concept classifies execution entities,
such as the RTM, trusted OS, and trusted hardware, on the basis of five Locality
levels representing a certain level of trust. These levels are encoded into the
address of the LPC start cycle. Thus, upon command reception, a TPM 1.2
specified chip identifies the active level of trust and regulates access, especially
reset, to certain PCRs. The Locality level of 4 is applied only within the context
of special CPU instructions such as those introduced by Intels Trusted eXecution
Technology (TXT) and AMDs Secure Virtual Machine (SVM) (SENTER/SKINIT).
Consequently, illegal attempts to reset the associated dynamic PCRs (PCR17-
22) by software are detected resulting in a prevention of reset attacks. However,



Winter et al. [28] manage to hijack the LPC bus to effectively emulate Locality
level 4 interaction so that it becomes possible to reset the TPM state.

In mobile devices, SEs in form of SD cards can be physically accessed by po-
tential adversaries and even reset by software at any time. This way, all volatile
state of SE applications gets lost. Since the design of seTPM maintains PCR
values in persistent memory (EEPROM), a volatile state loss is not a concern.
However, the Java Card framework cannot distinguish between hardware and
software card resets. In the context of seTPM, hardware resets are tolerated.
Software induced card resets through special APDUs, however, must be inter-
cepted to prevent reset attacks. This leads to the question how to determine
when the TPM Startup command is allowed to reset the PCR values of seTPM.

To face reset attacks, on smartcards that cannot distinguish between hard
and soft reset, we propose a hardware-assisted solution that can be realized with
modern mobile device architectures, such as ARM TrustZone (TZ) [29]. ARM
TZ provides among others secure SRAM for key storage. Access to that memory
is regulated by a so called TrustZone Memory Adapter (TZMA), whereas the
access is granted only when the CPU is in a privileged mode called secure world.
We propose to use an immutable, signed, boot loader or locked flash memory
as the Core Root of Trust for Measurement (CRTM). The boot loader in our
case is placed inside the secure world and starts the operating system (OS)
kernel in the less privileged normal world. Our design assumes the boot loader to
generate a random secret that can be stored in the secure, persistent, memory.
Due to the flexibility of seTPM, we are able to parametrize the TPM Startup

command so that the generated secret can be persistently stored on the seTPM.
During seTPM initialization, the TPM Startup command becomes responsible to
determine when the TPM state must be reset.

1. The initial setup of the seTPM is determined by a missing secret. In this
case, the TPM Startup command initializes the secret on the SE and sets its
state to default values, respectively.

2. Further setup attempts compare the maintained secret with the provided
secret value of the TPM Startup command. In case the compared values
match, the seTPM continues setting its state to default values. Otherwise,
the command is aborted keeping the old PCR values.

This method assures that only the boot loader is able to reset the seTPM state.
Reset attack attempts could be reported through custom seTPM commands.

5 Prototype Implementation

The software implementation of seTPM comprises a host-side application, a data
transfer management system, and a Java Card applet representing the seTPM.
The host-side application may represent any Trusted Computing application uti-
lizing the services provided by a conventional TPM. TrouSerS [18] provides a set
of tpm-tools which enable the use of basic TPM services on Linux-based systems.
These tpm-tools employ the TrouSerS library providing the TSS (Figure 1). To



Table 2: TPM commands supported by seTPM.

Index TPM Command

1 TPM OIAP

2 TPM OSAP

3 TPM GetCapability

4 TPM ReadPubek

5 TPM OwnerReadInternalPub

6 TPM GetRandom

7 TPM FlushSpecific

8 TPM PcrRead

9 TPM Extend

10 TPM OwnerClear

Index TPM Command

11 TPM TakeOwnership

12 TPM Init

13 TPM Startup

14 TPM CreateWrapKey

15 TPM LoadKey

16 TPM Seal

17 TPM Unseal

18 TPM SelfTestFull

19 TPM ContinueSelfTest

20 TPM GetTestResult

demonstrate the seamless integration of seTPM into Trusted Computing envi-
ronments, we utilized tpm-tools to provide a TSS 1.2 compliant implementation
of the host-side application. As being discussed in Section 4.2, the data transfer
management system manages the communication between the host-side applica-
tion and the seTPM. This part is implemented as a device driver maintaining a
PC/SC connection with the SE. The last bit of our implementation concerns the
seTPM Java Card applet providing TPM 1.2 functionality. Our current imple-
mentation supports 20 commands as specified by [12]. The supported commands
are listed in Table 2. Every TPM command processes incoming data and subse-
quently generates a TPM response. If the TPM response exceeds the maximum
number of bytes that can be embedded into a response APDU, the message is
split up into chunks. Thus, the host’s data transfer management system becomes
responsible to request the remaining chunks of the TPM response.

5.1 Challenges

For our prototype implementation, we had to cope with various challenges which
are discussed in the following. Severe resource constraints of SEs generally present
one significant difficulty. As a result, the use of SEs with higher resource capac-
ities may solve issues that might have affected earlier implementations.

Memory Management Java Card technology based secure elements utilize
RAM and EEPROM for different purposes. Volatile RAM is used for temporary
computations, whereas EEPROM is used to persistently store code and data of
Java Card applets. Dynamic object construction allocates memory in EEPROM.
However, access to EEPROM is typically about 30 times slower than access to
volatile data in RAM. Due to the limited amount of RAM and dramatically
slow access of dynamically allocated memory in EEPROM, our implementation
handles temporary values in RAM and stores only the data that must survive
power loss in EEPROM. Yet, the Java Card technology does not support allo-
cation of arbitrary data structures in RAM but rather manages data in form
of transient byte arrays. Therefore, the state of the seTPM is managed by ded-
icated wrappers maintaining data structure elements in transient byte arrays.



This way, temporary computations of arbitrary data structure elements can be
performed in RAM, thus limiting the number of accesses to EEPROM.

Key Encryption The TPM command TPM Create WrapKey initiates the gen-
eration of an asymmetric key pair that can be stored as an encrypted blob on the
host side. To bind the key to the TPM, the TPM specification 1.2 [12] states that
the newly created key pair should be encrypted by means of the non-migratable
Storage Root Key (SRK). Therefore, essential parameters, which are used to re-
store the key at a later point in time, are encrypted with the SRK and sent to
the host. However, the asymmetric key representation in CRT form used by the
Java Card API requires more than 1024 bytes (the size of the utilized asymmet-
ric key length). Since the asymmetric encryption is not capable of encrypting
more bytes than the asymmetric key size, our implementation shifts towards a
merged architecture combining the TPM 1.2 and TPM 2.0 specifications: The
TPM 2.0 specification supports the encryption of asymmetric keys by means
of a symmetric encryption algorithm (AES). As a consequence, keys of various
lengths can be encrypted. Therefore, we introduce an additional non-migratable
symmetric Key Encryption Key (KEK), which is generated during the installa-
tion process. As discussed in Section 4, our future implementation of a TPM 2.0
compliant seTPM applet can share the KEK with its TPM 1.2 counterpart.

Garbage Collection Automatic memory reclamation is usually not part of
the JCRE. To prophylactically prevent running out of memory at run-time, all
objects need to be allocated during the applet installation and initialization
stage. Thus, the allocated objects need to be made globally available to the
rest of the implementation. Static object instances would meet this requirement.
However, to additionally ensure uniqueness of these instances, we have decided
to apply the Singleton pattern to globally used objects.

Stack Frames Method invocations and utilization of try-catch blocks create
overhead concerning memory consumption through the dynamic generation of
stack- and exception frames. This needs to be considered during implementation
as the number of invoked methods may lead to memory shortage.

5.2 Evaluation

We evaluated our prototype by measuring the execution time of five of the most
critical TPM commands from two different host systems (Freescale i.MX6 de-
velopment board and a Lenovo Thinkpad X220) and compared the results with
performance measurements of a TPM natively built into a notebook (Lenovo
Thinkpad X220). Our measurements consider the time required to traverse the
entire TCG stack beginning from the TSP interface (TSPI) down to the seTP-
M/TPM (Figure 1). Therefore, we measured the time needed for invocations
of the TSPI functions. The utilized SE implements the Java Card specification
2.2.2 and contains 4 kB of volatile RAM and about 80 kB of non-volatile EEP-
ROM. The communication is established through a conventional card reader
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Figure 4: Evaluation of TPM 1.2 commands. The high-level TSPI commands inter-
nally invoke the associated TPM commands.

with PC/SC support. The following presents our evaluation results. However,
the data transfer overhead caused, e.g., by a slow card reader needs to be con-
sidered: An internal card reader might result in a smaller transmission overhead.

– Figure 4(a) presents a non linear timing behavior in both seTPM setups and
the native TPM. One explanation is that the TPM CreateWrapKey command
generates an asymmetric key pair on the seTPM/TPM and hence needs
to perform primality tests. A random number that is not a prime must be
rejected and regenerated.

– The invocation of the TPM TakeOwnership command as well indicates a non-
linear timing behavior of both seTPM setups in Figure 4(b). Interestingly,
the native TPM takes constant time to perform the command. The seTPM
creates an asymmetric SRK on every TPM TakeOwnership invocation. Thus,
seTPM needs to perform primality tests, as described above. We assume
that the native TPM computes the SRK in advance, right after the TPM
has been reset, thus reducing the execution time.

– The execution of the command TPM LoadKey performs better in both seTPM
setups than the native TPM, as shown in Figure 4(e). The reason for this



Table 3: Mean time in ms of evaluated commands.

TSPI Command seTPM (PC) seTPM (i.MX6) TPM

Tspi TPM TakeOwnership 26555,50 27845,42 2399,94
Tspi Key CreateKey 17667,39 26894,09 29689,12
Tspi Key LoadKey 831,10 833,84 1509,60
Tspi Data Seal 782,27 788,77 371,90
Tspi Data Unseal 1900,04 1909,89 1451,96

TPM Command seTPM (PC) seTPM (i.MX6) TPM

TPM Extend (SHA-1) 55,69 55,76 11,79
TPM Extend (Keccak) 5775,32 5810,56 –

is that symmetric cryptography is faster than asymmetric cryptography. As
being discussed in Section 5.1, our prototype implements a modified version
of TPM CreateWrapKey: seTPM generates an asymmetric key pair, which is
encrypted with the symmetric KEK instead of the asymmetric SRK. Ergo,
TPM LoadKey on the seTPM requires less time to decrypt the wrapped key.

– In both seTPM setups, the TPM commands TPM Seal and TPM Unseal per-
form slower than the native TPM, as shown in Figure 4(c) and Figure 4(d).
Naturally, this is the accumulation of various factors, such as the bus trans-
mission rate and different CPU rates of the native TPM and seTPM.

The mean time of the evaluated TSPI commands is shown in the first part of
the Table 3. The table opposes the performance of the native TPM and the two
seTPM implementations with different hosts. Except for Tspi Key CreateKey(),
the table shows a minor variation between both seTPM setups, indicating a host-
independent behavior. Consequently, our prototype can achieve similar results
even on very resource-constrained devices.

We conclude our evaluation with a short demonstration of the functional
extensibility of seTPM: The TPM Extend command is responsible for updating
specified PCR register values with integrity measurements provided by the host.
This process concatenates a PCR register value with the provided measure-
ment and subsequently generates a SHA-1 hash over the concatenated string.
The resulted hash value is stored within the specified PCR register: PCRnew =
SHA1(PCRold||measurement). The second part of the Table 3 presents the
mean time required for the TPM Extend command on both seTPM implementa-
tions as well as on the native TPM. One can observe that our implementation
performs slightly slower that the native TPM. However, according to the data
transfer overhead of contactless secure elements, our implementation requires
about 40 ms to transfer 25-50 byte to and back from the seTPM. Consequently,
our implementation would be able to almost keep up with the performance of
a native TPM, when connected, e.g., through an internal card reader. In addi-
tion, Table 3 shows performance results of the TPM Extend command using the
Keccak hash algorithm. Obviously, a software implementation cannot keep up
with a hardware accelerated SHA-1 implementation. However, this shows that
our goal concerning functional extensibility has been met.



6 Conclusion

In this paper, we presented the architecture and design of seTPM, a secure ele-
ment based Trusted Platform Module. To face current compatibility issues, we
introduced an architecture of a hybrid system combining the TPM 1.2 and TPM
2.0 standards, the concepts of which may be implemented in the future. Our pro-
totype implementation comprises 20 of the most important TCG specified TPM
1.2 commands as a framework that can be easily extended to finally introduce
hardware supported Trusted Computing to mobile devices. The architecture de-
pendent parts of seTPM have been implemented for Linux-based systems and
can be easily ported to Android. We showed with our implementation that a
seamless integration into the widely deployed TSS implementation TrouSerS is
feasible. Further, we provided a proof-of-concept that our design is more flex-
ible than hardware TPM chips by exchanging the SHA-1 hash algorithm with
the Keccak algorithm. With that approach we were also able to increase the
security level compared to native TPM solutions. Our evaluation showed that
seTPM performs similar to a native TPM. Although some TPM commands per-
form slower on the seTPM in comparison to a native TPM, it still presents an
attractive solution for mobile devices. In summary, we believe that seTPM is
capable of eliminating lots of today’s issues concerning trust in mobile devices
as our approach closes the gap between Trusted Computing and GlobalPlatform
specified SEs of modern smart phones.
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