
The Art of False Alarms in the Game of Deception:
Leveraging Fake Honeypots for Enhanced Security

Apostolis Zarras
Ruhr-University Bochum
apostolis.zarras@rub.de

Abstract—The great popularity of the Internet increases the
concern for the safety of its users as many malicious Web pages
pop up in daily basis. Client honeypots are tools, which are
able to detect malicious Web pages, which aim to infect their
visitors. These tools are widely used by researchers and anti-virus
companies in their attempt to protect Internet users from being
infected. Unfortunately, cyber-criminals are becoming aware of
this type of detection and create evasion techniques that allow
them to behave in a benign way when they feel to be threatened.
This bi-faceted behavior enables them to operate for a longer
period, which translates in more profit. Hence, these deceptive
Web pages pose a significant challenge to existing client honeypot
approaches, making them incapable to detect them when exhibit
the aforementioned behavior.

In this paper, we mitigate this problem by designing and
developing a framework that benefits from this bi-faceted be-
havior. Our main goal is to protect users from being infected.
More precisely, we leverage the evasion techniques used by
cyber-criminals and implement a prototype, called SCARECROW,
which triggers false alarms in the cases of deceptive Web pages.
Consequently, the users that use SCARECROW for Web surfing
can remain protected, even if they visit a malicious Website. We
evaluate our implementation against malicious URLs provided
by a large anti-virus company and show that when SCARECROW
is deployed, malicious Websites with bi-faceted behavior do not
launch their attacks against normal users.

Keywords—Client Honeypots; Malicious Websites; Deception

I. INTRODUCTION

Over the last decade, the Internet has become extremely
popular. In daily basis, individuals utilize the Internet for a
variety of tasks, ranging from education and work to personal
entertainment and social networking. In this Internet-connected
society, users spend most of their online time using browsers to
access the Internet. This tendency makes the browsers the most
indispensable software product of our days. Unfortunately,
this enormous growth of Internet’s popularity has drawn the
attention of miscreants that try to illegally monetize their
activities. For this purpose, cyber-criminals create fraudulent
Websites that lure Internet users and force them to install
malicious software (malware) on their computers, most of the
times without the users’ prior knowledge or consent. These
Websites usually exploit vulnerabilities in a browser and trick
it to install malware on the user’s machine [12, 27, 28]. The
infected computers, known as bots, are typically organized
into so-called botnets that are remotely controlled by a single
entity, known as the botmaster [1, 6, 7]. This is one of the
most profitable businesses in the underground market in which
botmasters can gain a significant amount of revenue per year
by operating only few thousand bots [15, 33].

As a primary line of defense against this emerging threat,
researchers and security analysts utilize client honeypots to
discover, study, and obliterate malicious Websites. Client
honeypots—in contrast to server honeypots, which are decoy
systems set up to attract and trap attackers that attempt to
penetrate them—crawl the Internet, interact with servers, and
classify Websites based on their malicious behavior. More
precisely, client honeypots, which are usually instrumented
virtual machines, visit a Web page and monitor all the changes
in a virtual machine’s file system, configuration settings and
running processes. If they notice an unexpected behavior, the
Web page is flagged as malicious [23, 24, 37]. The secure
environment where the client honeypots operate, allow the
researchers to discover attacks and exploits, release security
patches, and create browser’s alerts that triggered when a user
tries to access a malicious Website. The findings are usually
published on blacklists, which in turn are used for further study
or development of more secure Web products. For instance,
modern browsers utilize mechanisms such as Google’s Safe
Browsing [11] for protecting their users against known Web
threats and offer them a more secure Web surfing experience.

Client honeypots pose a significant challenge for the
smooth operation of fraudulent Websites. Unfortunately, cyber-
criminals who watched the incoming traffic of their Websites to
exponentially shrink developed techniques to avoid detection.
More precisely, to overcome detection, many malicious Web
pages established a bi-faceted behavior. By adopting a series of
inspections, deceptive Websites can accurately determine if a
client is a normal browser or a client honeypot. In detail, when
a client is probed, it returns back a response. This response is
valuable for the attackers as they can gain information about
the true origin of the client. Thus, to avoid detection, they do
not mount their attack if they are dealing with a client honeypot
but instead they appear to have a completely benign behavior.
This strategy allows them to remain hidden and operate for a
longer period of time.

Several of the evasion techniques used by malicious Web
pages have been previously studied [16]. In general, cyber-
criminals introduce a number of attacks that leverage the
weaknesses in the design of client honeypots. These attacks
are divided in two major categories: (i) identification of the
monitoring environment, and (ii) evasion of its detection.
The malicious Web pages in order to remain undetected must
successfully implement attacks from both categories. While
the attacks from the first category allow the miscreants to
detect the presence of a monitoring system, the attacks from
the second category transform the malicious behavior of the
Web pages to appear as completely benign.



In this paper we utilize the bi-faceted behavior of malicious
Websites to enhance the users’ security. We designed and
implemented a framework, called SCARECROW, which ben-
efits from the precautions taken by deceptive Websites to hide
their malicious activities from client honeypots. In particular,
SCARECROW cloaks a Web browser to appear as a monitoring
system. More precisely, when a user visits a Website, the
framework employs all the necessary mechanisms to disguise
its actions as they are generated by a client honeypot. Thereby,
all interactions between a user’s browser and a Website take
place under this security umbrella. Unfortunately, this may
occasionally interfere with the normal browsing experience.
Nevertheless, users can easily deactivate the framework on
demand, or can configure it to meet their needs. In summary,
SCARECROW allows the users to surf the Internet protected
from attacks that exploit their browsers and download malware,
transforming eventually their computers into bots.

We implemented our prototype as an extension for Firefox
browser. Browser extensions offer a series of advantages as
they require minimum effort from users and are already
widespread, as most of the Internet users have at least one
or more extensions installed in their browsers. Having that in
mind, we implemented SCARECROW as a framework with a
clear attack prevention focus, which is designed to be easily
integrated with Firefox and thus, can be used by inexpe-
rienced users. This contrasts with common client honeypot
approaches, used by researchers and security experts, which
have a strict attack detection mission. Finally, we evaluated
our implementation against malicious URLs provided by a
large anti-virus company and show that our framework can
protect users against malicious Websites that display a bi-
faceted behavior. We should note that our framework does
not replace traditional anti-virus products and techniques, as
there is a wide-variety of Web pages that have exactly the
same behavior for both normal browsers and client honeypots.
Nevertheless, SCARECROW constitutes the first line of defense
against infections from intelligent malicious Web pages that try
to remain undercover.

In summary, we make the following main contributions:

• We transform a traditional attack detection approach,
such as client honeypots, to a system with a clear
attack prevention focus.

• We propose SCARECROW, a novel framework, which
enhance users’ security when surfing the Web. This
framework allows the users to surf the Web protected
from attacks that performed by deceptive Web pages.

• We implement a prototype of our approach as a
browser extension for the Firefox browser. Our proto-
type creates events that trigger the inspection mech-
anisms against client honeypots used by intelligent
adversaries.

• We evaluate our implementation and our preliminary
results show that SCARECROW can successfully pro-
tect users against malicious Websites that display a
bi-faceted behavior.

II. CLIENT HONEYPOTS

Client honeypots, also known as honeyclients, constitute a
security technology capable of discovering malicious servers
on Internet. More specifically, the client honeypots pose as nor-
mal Web clients and interact with servers to investigate whether
an attack has occurred. They divided in: (i) low-interaction,
(ii) high-interaction, and (iii) hybrid client honeypots. In the
rest of this section we briefly describe these categories.

A. Low-Interaction Client Honeypots

Low-interaction client honeypots use simulated clients,
similar to Web crawlers, whose purpose is to interact with
a server. Their task is to analyze the server’s responses and
determine about its nature. By deploying static analysis tech-
niques, such as signatures, can search for malicious patterns
and assess whether an attack has occurred.

Increased speed and low resource consumption are the
major advantages of the low-interaction client honeypots.
However, since they are usually signature-based approaches,
they are unable to detect previously unseen attacks such as
zero-day threats. Additionally, their simplicity makes them
easily distinguishable by advanced exploits.

B. High-Interaction Client Honeypots

High-interaction client honeypots are fully functional sys-
tems comparable to real systems. They use a full-featured Web
browser to visit potentially malicious Web pages and classify
their behavior. To this end, they monitor the environment in
which the browser operates to inspect any modification of the
system’s state after visiting a Web server. The detection of any
change in the monitored environment indicates the occurrence
of an attack, and the corresponding Web page is flagged by
the system as malicious.

This type of client honeypots is very effective at detecting
novel attacks against clients. Nevertheless, the tradeoff for this
accuracy is the high complexity of running a high-interaction
honeypot and the time consuming monitoring process. Addi-
tionally, since the client honeypots are running inside virtual
machines, the malicious Web pages may try to detect the
presence of the virtual environment and cease from launching
the attack. Consequently, because of the fact that no detectable
state change in the monitored environment occurred, the hon-
eypot is likely to incorrectly classify the server.

C. Hybrid Client Honeypots

Low-interaction and high-interaction client honeypots try
to detect malicious Web pages from a different perspective.
Hence, the combination of both approaches leads to a detection
system that integrates high speed and the ability to identify new
threats. This detection system is called hybrid client honeypot.

Hybrid client honeypots combine the advantages of both
low-interaction and high-interaction client honeypots. More
precisely, they incorporate the classification methods used
by low-interaction and high-interaction client honeypots into
a hybrid system, which is capable of identifying malicious
Web pages in a cost effective way on a large scale. For that
reason, the hybrid client honeypot approach outperforms a
high-interaction client honeypot with identical resources and
identical false positive rate.



III. SYSTEM OVERVIEW

In this section, we discuss about the architecture of our
proposed system. We initially explain the threat model we use
throughout this paper and then give information on the design
details of SCARECROW.

A. Threat Model

We assume that a user surfs the Internet with a vulnerable
Web browser and visits a malicious Web page. Even if the
browser itself is secure, there exist a variety of extensions
installed in the browser that might have subtle vulnerabilities,
which can be exploited. In fact, hundreds of these extensions’
vulnerabilities have been studied in prior works [3,4], and tools
that automatically highlight these weaknesses have already
been implemented [2, 17, 20, 26]. Unfortunately, this is not a
hypothetical scenario but an everyday situation that millions
of users face every day while surfing the Web.

Additionally, we assume that the malicious Web page is
aware of the browser’s, or extensions’, vulnerabilities and pos-
sesses all the necessary tools, which can exploit the browser.
We believe that the purpose of this page is to generate profit
for its operator and thus, the more time remains undetected the
more profit it creates. Consequently, we consider that the page
is capable of displaying only benign content when identifies
the presence of a client honeypot.

B. Design Details

Since adversaries’ goal is to hide their malicious activities
from automated detection systems, they created mechanisms
to successfully inform them when client honeypots visit their
Web pages. Kapravelos et al. [16] created a list of these
mechanisms, which is divided in two categories: (i) identi-
fication of the monitoring environment, and (ii) evasion of its
detection. Table I provides an overview of the techniques used
in each category. SCARECROW leverages the heuristics of both
categories to misinform miscreants for the true identity of a
client. In the following, we provide details about the integration
of each mechanism in our prototype.

Virtual Machine Detection. Since many successful drive-
by-download attacks install malware that interferes with the
victim’s operating system, many client honeypots utilize virtual
machines to protect the actual host from being infected. As a
matter of fact, after a complete scan to an under investigation
Web page has been performed, the virtual machine returns the
operating system to a safe state. Unfortunately, the attackers
in order to detect a monitor environment utilize mechanisms,
which can reveal the presence of a virtual machine.

In our system, we turn this knowledge into a protection
heuristic. More precisely, some virtual machines have the
tendency to reveal their presence by inserting elements into
the guest operating system, which eventually can be traced.
For instance, these elements can be service processes, unique
files or directories, or even specific registry keys. SCARECROW
is able to generate all the required files in the operating system,
as well as, dummy executable files, which then execute. This
way, it creates processes that cloak the operating system to
appear as it is running inside a virtualized environment.

Table I: Popular mechanisms used by malicious Web pages to
evade detection.

Categories of Malicious Mechanisms Heuristics

Monitoring Environment Detection
Virtual Machine Detection
Client Honeypot Detection
HTTP Headers Checks

Detection Evasion Mouse Events Exploitation
Whitelist Manipulation

Client Honeypot Detection. An adversary in order to detect the
presence of a monitoring system can actually check for signs
of the client honeypot itself. These signs can be, for example,
executable or DLL files. Sadly, there exist honeypots that do
not try to hide their presence, and even worse the attackers
are familiar of this practice. In theory, a malicious Web page
can use the JavaScript engine to load a suspicious file from
the client’s local file system, which is only appeared in cases
of client honeypots. This file can be an executable or library,
since the engine does not perform any checks to validate the
type of the files that have been requested. If the file exists, the
attacker is getting aware of the situation.

Hopefully, Same-Origin Policy [36] prohibits the access on
local files through JavaScript. Nevertheless, there exist some
older browsers’ versions, or some customized browsers used
by client honeypots that allow this technique to be executed.
Similar, SCARECROW has the ability to hook on specific
JavaScript events that request access to the filesystem. In detail,
each time a Web page tries to access a local file, a warning
informs the user about the intention of the script. Additionally,
SCARECROW creates several client honeypots’ executable files
on every browser’s startup and deletes them on every browser’s
shutdown. We observed that only the presence of these files is
sufficient to trigger an alert.

HTTP Headers Checks. Whenever a browser visits a Web
page, it sends one or multiple HTTP requests to the equivalent
Web server. Each request contains fields, called headers, which
reveal information about the type of request, the connection,
the browser etc. Among these fields, there are two specific
headers that prove to be quite useful for the attackers: the
User-Agent and the Referer. While the User-Agent can reveal
information about the browser itself, the Referer provides
the source URI from which the call of the current Web
page originated. An adversary could utilize this knowledge
to determine if the client is actually a honeypot. Modern
honeypots can easily modify the User-Agent value to mimic
a normal Web browser, however, it is difficult to predict the
correct origin of the hosted URI, based on which the malicious
Web page will trigger the attack.

SCARECROW modifies both HTTP headers to appear as a
misconfigured client honeypot. For this purpose, since there
is only a small portion of malware that targets non-windows
operating system, we use User-Agent header to classify the
browser as a client honeypot, which runs inside a Linux-
based machine. Additionally, we adjust the Referer header
to purport as the Web page is harvested from an anti-virus
vendor. Consequently, as the user is probably visiting the
malicious Web page by clicking a link in a different Website,
this information will not be revealed to the attacker.



Mouse Events Exploitation. To ensure that they deal with a
real client, many malicious Web pages wait for a prior user
input before launching an attack. Since frequently a client
honeypot only visits a Web page, without actively interact
with it, events such as the movement of the mouse will never
be fired. Therefore, adversaries can hold their attacks before
one or more similar events convince them that an actual user
generates the traffic to their Web server and not an automated
tool as a Web crawler or a client honeypot. For this purpose
they utilize JavaScript. In particular, some JavaScript objects
have events associated with them. Usually, these events are
user actions, or at least initiated by a user, for instance, click
on an object or simply moving the mouse. Hence, an event
listener can be used in JavaScript code to specify actions in
response to the occurrence of a specific event.

SCARECROW prevents the event listeners from catching
the mouse movements. Consequently, the adversaries get the
impression of dealing with client honeypots instead of real
users. However, we believe that this might affect the user
experience, especially in cases where the mouse interaction
is necessary. An example could be some online flash games
that require the users’ mouse events to operate.

Whitelist Manipulation. All browsers are able to interact
with the operating system. This is an important action for
procedures that store browsing data on the hard disk drive or
load additional programs to display Web content. Client hon-
eypots use the so-called whitelists when analyzing attacks to
separate the harmless interactions between the browser and the
operating system, from the harmful. Adversaries circumvent
these whitelists with cache poisoning attacks. Since creating,
reading and writing to a file in the browser cache is a whitelist
action, an attacker could leverage it to change the files in the
cache, in order to force the redirection from benign URLs to
malicious Web pages. This attack is so severe that even if a
victim closes or reboots the browser, it is sufficient just a visit
to any Web page that loads a modified cached script to re-infect
the machine.

To protect a client from these redirections we clear the
cache on a regular basis. The browser’s cache is a data space
where Web pages are stored once they are loaded. If a Web
page gets revisited in the future, the content of this page can be
loaded directly from the cache, which is faster than loading the
content from a remote server. Each Web page is accompanied
with the duration on which it can be loaded from the cache,
before it needs to be downloaded again from the server. An
adversary could inject malicious code inside a Web page and
change its expiration date to the far future, so that is always
being loaded directly from the cache. When we clear the cache
regularly we cannot prevent the original injection of malicious
code, however, we can prevent a re-infection from happening.

To sum up, we consider the combination of the aforementioned
mechanisms sufficient to delude a bi-faceted malicious Web
page so not to launch its attack. However, one can notice that
mixed information is returned from the different components
of SCARECROW. While some components claim, for instance,
that the operating system is a Linux distribution, others state
that all the processes run inside a Windows OS. Note that
this is not a wrong implementation of SCARECROW, but is
designed in this way intentionally, so to appear to attackers as
a misconfigured client honeypot.

Malicious)URLs

Cluster

Network)Traces
Analysis

Report

Figure 1: Overview of the experimental environment.

IV. EXPERIMENTAL EVALUATION

In this section we present the evaluation results of our pro-
totype. First, we briefly describe the experimental environment
and then evaluate the protection effectiveness of SCARECROW
using real malware samples from a large anti-virus company.

A. Experimental Environment

We performed our experiments on a cluster that consisted
of Windows XP machines. We chose Windows XP as the hosts’
operating system due to its known vulnerabilities, which make
it a perfect target for adversaries. Furthermore, it is long been
known that Java and Flash are favored targets of attackers
thanks to their huge installation bases and numerous security
issues. Thus, in order to increase the chance of successful
attacks against our infrastructure, in each host we installed
some older versions of Java, Flash, Acrobat, and VLC that
are susceptible to security breaches. Since we implemented
the current version of our prototype as a Firefox extension,
we decided to run all our experiments with this Web browser
in order to have a consistency in our results. To this end,
we installed SCARECROW only on half of the machines of
our cluster, while to the rest we installed a vanilla version of
Firefox.

For our experiments, we used a dataset of 8, 291 malicious
URLs, which are provided by a large anti-virus company. We
visited each URL with two machines from the cluster, one
with SCARECROW installed on it and one without, generating
in parallel events such as mouse movements and keystrokes.
In addition, we captured and stored the network traffic of each
visit for further analysis. After each Web browser’s visit to
the malicious URL, we returned the host to a clean state.
To do so, we used Clonezilla [5] as a disk recovery solution.
Albeit that using a disk recovery solution is a time consuming
task, compared to virtual machines snapshots, we rejected
the snapshots because they could have interfered with the
Virtual Machine Detection heuristic of SCARECROW causing
inaccurately results on our experiments. After visiting each
URL, we analyzed the captured network traffic looking for
existence of malicious traces. In case that the traffic of both
machines contained malicious traces we concluded that either
the malicious Web page did not display a bi-faceted behavior,
or our system was not able to deceive attackers’ mechanisms.
Otherwise, if the captured traffic of the vanilla browser con-
tained malicious traces, but the traffic from SCARECROW was
clean, we accounted this case as a successful protection.

In summary, Figure 1 displays the overview of our experi-
mental environment. Web browsers visit the malicious URLs,
while the captured traffic is forwarded for extensive analysis
that assesses the effectiveness of SCARECROW.



B. Protection Effectiveness

We evaluated the protection effectiveness of SCARECROW
against real malicious Web pages. From the 8, 291 malicious
URLs that constitute our dataset, SCARECROW successfully
prevented the infection from 437. The outcomes of this exper-
iment are two-fold. On the first hand, the results reveal that
there is a portion of malicious Web pages in the Internet that
try to avoid detection by appearing a benign behavior when
they are visited by a client honeypot. On the other hand, they
show that is possible to use attackers’ precautions for users’
benefit by simply camouflaging a normal web browser to a
client honeypot.

We then analyzed, the remaining 7, 854 malicious URLs
that SCARECROW could not prevent them from infecting the
host machines. We wanted to see if these infections caused
because SCARECROW was not able to prevent them, or because
the malicious Web pages did not try to hide their existence
from client honeypots. Thus, we carefully examined their
source code searching for indications of possible bi-faceted
behavior. Nevertheless, we could not find signs that reveal
any attempt of concealing their malicious essence. This is an
interesting result, which shows that the majority of miscreants
are not care of hiding their fraudulent activities. We can only
speculate that most of the operators of these Web pages do
not have advanced technical knowledge and thus, in order to
launch their attacks use black-market tools, which may not
support protection against client honeypots.

V. LIMITATIONS

Despite the fact that SCARECROW is able to effectively pre-
vent attacks from deceptive Web pages, like any other system
has its own limitation. An adversary, who gains knowledge on
our system existence, might be able to effectively infect the
users. In the following, we discuss our system’s limitations.

A. User Interaction Interference

The most obvious limitation of SCARECROW is the prob-
lems that might cause in the users’ browsing experience in
specific Web pages. Although, usually a user does not notice
any difference while surfing the Internet, there are some cases
in which our system interfere with the user’s actions. One
particular case is when the user tries to play an online flash
game that requires input from the user’s mouse movements.
Albeit the user can see the mouse cursor moving in the screen,
SCARECROW prevents these mouse events from triggering the
corresponding event listeners. Consequently, the result of this
restriction is the mouse movement events never reach the game
engine, which assumes that the user has never provided any
valid input.

A possible solution on this problem would be the de-
activation of the mouse events restrictions. As a matter of
fact, SCARECROW allow to its users to select the heuristics
they want to enable. Additionally, they have the capability to
enable/disable individual heuristics for distinct Websites. This
way, the restriction of mouse events can be disabled for a
Website that requires this specific user input, and be enabled
for the rest of the Websites. However, the users should be
certain that the visited Web page does not contain malware
before deactivating any of the heuristics.

B. File Content Verification

One of SCARECROW’s heuristics is the creation of dummy
executable and DLL files that used by virtual machines and
client honeypots. Most of the attackers only check for the
existence of these files. However, an intelligent deceptive Web
page can validate the provided with the expected files. If there
is no match, it can assume that is under a deception attempt.
In that case, having that knowledge, it can decide whether it
proceeds with the attack or not.

In this case, we can easily overcome this pitfall by simply
providing the real files. Nevertheless, as we did not want to
force users to save additional executable files and libraries
to their computers, we offer them the opportunity to select
between the dummy and the real files when using our system.
If they choose the second option, SCARECROW downloads all
the required files from an online repository.

VI. RELATED WORK

Several malware detection systems focus on network flow
analysis [8, 13] or require deep packet inspection [14] in
order to detect compromised machines within a local net-
work. Other detection approaches aim to identify common
behaviors of infected machines when performing malicious
activities [10, 13, 34, 38]. On the other hand, traditional hon-
eypots as a detection approach have proven very successful
with tasks as identifying malware [21], creating intrusion
detection signatures [19] and understanding distributed denial-
of-service (DDoS) attacks [22]. As successful successors,
client honeypots visit Websites and monitor changes in the
underlying operating system that may be caused by malicious
Web pages [23, 24, 27, 35, 37].

Attacks against client honeypots is an aged old idea. Wang
et al. [37] mentioned possible evasions techniques against
HoneyMonkey. Rajab et al. [29] in their study revealed that
client honeypots, among other detection system, could not
protect themselves against evasive techniques deployed by
attackers. Kapravelos et al. [16] examined the security model
that high-interaction client honeypots utilize, and evaluated
their weaknesses against intelligent evasion techniques.

The concept of deceiving malware to hide its malicious
behavior and thus, not to harm a machine is not new. Re-
searchers suggested the use of fake honeypots to scare the
attackers [32]. Additionally, Rowe [31] presented a study
in which he assesses several tools for evaluating honeypot
deceptions. Finally, Garg and Grosu [9] proposed a game
theoretic framework for modeling deception in honeynets.

Researchers utilize browser extensions when their deployed
systems focus on inexperienced users with a clear intention of
increasing users’ security and privacy while surfing the Inter-
net. PwdHash [30] is a browser extension designed to improve
password authentication on the Web with minimal change to
the user experience and no change to existing server config-
urations. Papadopoulos et al. [25] presented an obfuscation-
based approach that enables users to follow privacy-sensitive
channels on microblogging services, while, at the same time,
making it difficult for the services to discover users’ actual
interests. Kontaxis et al. [18] proposed a design for privacy-
preserving social plugins that decouples the retrieval of user-
specific content from the loading of a social plugin.



VII. CONCLUSIONS

Malicious Web pages remain the primary mean used by
miscreants to spread malware. Unfortunately, the effectiveness
of existing detection approaches, such as client honeypots, to
correctly classify malicious Web pages are considered modest,
especially in cases where the attackers deployed techniques to
display a benign behavior against these detection mechanisms.
In this paper, we benefit from the attackers’ precautions and
we transform these detection approaches to a system with a
clear attack prevention focus. In particular, we designed and
implemented a prototype that triggers false alarms causing
deceptive Web pages to display a benign behavior. Our primary
results indicate that the users, which utilize our system, can be
protected from these attacks without any additional anti-virus
software installed on their machines.

REFERENCES

[1] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A Multifaceted
Approach to Understanding the Botnet Phenomenon. In ACM SIG-
COMM Conference on Internet Measurement (IMC), 2006.

[2] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett. VEX:
Vetting Browser Extensions for Security Vulnerabilities. In USENIX
Security Symposium, 2010.

[3] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting Browsers
from Extension Vulnerabilities. In ISOC Network and Distributed
System Security Symposium (NDSS), 2010.

[4] N. Carlini, A. P. Felt, and D. Wagner. An Evaluation of the Google
Chrome Extension Security Architecture. In USENIX Security Sympo-
sium, 2012.

[5] Clonezilla. The Free and Open Source Software for Disk Imaging and
Cloning. http://clonezilla.org, Jul 2014.

[6] E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup: Un-
derstanding, Detecting, and Disrupting Botnets. In USENIX Workshop
on Steps to Reducing Unwanted Traffic on the Internet (SRUTI), 2005.

[7] D. Dagon, G. Gu, C. P. Lee, and W. Lee. A Taxonomy of Botnet
Structures. In Annual Computer Security Applications Conference
(ACSAC), 2007.

[8] J. François, S. Wang, T. Engel, et al. BotTrack: Tracking Botnets Using
NetFlow and PageRank. In IFIP Networking Conference, 2011.

[9] N. Garg and D. Grosu. Deception in Honeynets: A Game-Theoretic
Analysis. In Annual IEEE SMC Information Assurance and Security
Workshop (IAW), 2007.

[10] J. Goebel and T. Holz. Rishi: Identify Bot Contaminated Hosts by
IRC Nickname Evaluation. In USENIX Workshop on Hot Topics in
Understanding Botnet (HotBots), 2007.

[11] Google. Safe Browsing API. https://developers.google.com/
safe-browsing, Jul 2014.

[12] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich,
K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis,
et al. Manufacturing Compromise: The Emergence of Exploit-as-
a-Service. In ACM Conference on Computer and Communications
Security (CCS), 2012.

[13] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering
Analysis of Network Traffic for Protocol-and Structure-Independent
Botnet Detection. In USENIX Security Symposium, 2008.

[14] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter:
Detecting Malware Infection Through IDS-Driven Dialog Correlation.
In USENIX Security Symposium, 2007.

[15] C. Kanich, N. Weaver, D. McCoy, T. Halvorson, C. Kreibich,
K. Levchenko, V. Paxson, G. M. Voelker, and S. Savage. Show Me the
Money: Characterizing Spam-Advertised Revenue. In USENIX Security
Symposium, 2011.

[16] A. Kapravelos, M. Cova, C. Kruegel, and G. Vigna. Escape from
Monkey Island: Evading High-Interaction Honeyclients. In Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA). 2011.

[17] R. Karim, M. Dhawan, V. Ganapathy, and C.-c. Shan. An Analysis of
the Mozilla Jetpack Extension Framework. In European Conference on
Object-Oriented Programming (ECOOP), 2012.

[18] G. Kontaxis, M. Polychronakis, A. D. Keromytis, and E. P. Markatos.
Privacy-Preserving Social Plugins. In USENIX Security Symposium,
2012.

[19] C. Kreibich and J. Crowcroft. Honeycomb: Creating Intrusion Detection
Signatures Using Honeypots. ACM SIGCOMM Computer Communica-
tion Review, 34(1):51–56, 2004.

[20] B. S. Lerner, L. Elberty, N. Poole, and S. Krishnamurthi. Verifying
Web Browser Extensions’ Compliance with Private-Browsing Mode. In
European Symposium on Research in Computer Security (ESORICS),
2013.

[21] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the Slammer Worm. IEEE Security & Privacy,
1(4):33–39, 2003.

[22] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage.
Inferring internet denial-of-service activity. ACM Transactions on
Computer Systems (TOCS), 24(2):115–139, 2006.

[23] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and H. M. Levy.
SpyProxy: Execution-based Detection of Malicious Web Content. In
USENIX Security Symposium, 2007.

[24] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A Crawler-
based Study of Spyware in the Web. In ISOC Network and Distributed
System Security Symposium (NDSS), 2006.

[25] P. Papadopoulos, A. Papadogiannakis, M. Polychronakis, A. Zarras,
T. Holz, and E. P. Markatos. k-subscription: Privacy-Preserving Mi-
croblogging Browsing Through Obfuscation. In Annual Computer
Security Applications Conference (ACSAC), 2013.

[26] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. ADsafety:
Type-Based Verification of JavaScript Sandboxing. In USENIX Security
Symposium, 2011.

[27] N. Provos, P. Mavrommatis, M. Abu Rajab, and F. Monrose. All Your
iFRAMEs Point to Us. In USENIX Security Symposium, 2008.

[28] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, N. Modadugu,
et al. The Ghost in the Browser: Analysis of Web-based Malware. In
USENIX Workshop on Hot Topics in Understanding Botnet (HotBots),
2007.

[29] M. Rajab, L. Ballard, N. Jagpal, P. Mavrommatis, D. Nojiri, N. Provos,
and L. Schmidt. Trends in circumventing web-malware detection.
Google, Google Technical Report, 2011.

[30] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger
Password Authentication Using Browser Extensions. In USENIX
Security Symposium, 2005.

[31] N. C. Rowe. Measuring the effectiveness of honeypot counter-
counterdeception. In System Sciences, 2006. HICSS’06. Proceedings
of the 39th Annual Hawaii International Conference on, 2006.

[32] N. C. Rowe, E. J. Custy, and B. T. Duong. Defending Cyberspace with
Fake Honeypots. Journal of Computers, 2(2):25–36, 2007.

[33] B. Stone-Gross, R. Stevens, A. Zarras, R. Kemmerer, C. Kruegel, and
G. Vigna. Understanding Fraudulent Activities in Online Ad Exchanges.
In ACM SIGCOMM Conference on Internet Measurement (IMC), 2011.

[34] G. Stringhini, M. Egele, A. Zarras, T. Holz, C. Kruegel, and G. Vigna.
B@bel: Leveraging Email Delivery for Spam Mitigation. In USENIX
Security Symposium, 2012.

[35] The Honeynet Project. Capture-HPC: Client Honeypot / Honeyclient.
https://projects.honeynet.org/capture-hpc, Jul 2014.

[36] W3C. Same-Origin Policy. http://www.w3.org/Security/wiki/Same
Origin Policy, Jul 2014.

[37] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King. Automated Web Patrol with Strider HoneyMonkeys: Finding
Web Sites That Exploit Browser Vulnerabilities. In ISOC Network and
Distributed System Security Symposium (NDSS), 2006.

[38] A. Zarras, A. Papadogiannakis, R. Gawlik, and T. Holz. Automated
Generation of Models for Fast and Precise Detection of HTTP-Based
Malware. In Annual Conference on Privacy, Security and Trust (PST),
2014.


