
The Link between r-contiguous Detectors and k-CNF

Satisfiability

Thomas Stibor, Jonathan Timmis and Claudia Eckert

Abstract—In the context of generating detectors
using the r-contiguous matching rule, questions have
been raised at the efficiency of the process. We show
that the problem of generating r-contiguous detectors
can be transformed in a k-CNF satisfiability prob-
lem. This insight allows for the wider understanding
of the problem of generating r-contiguous detectors.
Moreover, we apply this result to consider questions
relating to the complexity of generating detectors, and
when detectors are generable.

I. Introduction

The natural immune system is a powerful informa-
tion processing network and provides a rich source of
inspiration for the creation of techniques for solving
information processing and computational problems. Ar-
tificial immune systems are immune-inspired techniques
and algorithms which are applied on problem domains
such as pattern classification, clustering and optimization
— see [1], [2] for an overview. An early (and popular)
immune-inspired algorithm for pattern classification was
negative selection. During negative selection in the im-
mune system, self-reactive T-Lymphocytes which carry
antibodies on their surface, are eliminated by a controlled
death. As a result, only self-tolerant T-Lymphocytes sur-
vive the negative selection process and are then released
into the blood stream. Roughly speaking, the immune
negative selection is a process in which self-tolerant
lymphocytes are generated, thus allowing the immune
system to discriminate self proteins from foreign proteins
(termed non-self). Through the process of abstraction,
antibodies can be represented as bit-strings (termed
detectors), and the process of generating these detectors
can be created (termed negative selection). However, a
fundamental question arises : how are detectors generated

efficiently ?. In recent years, many detector generating
algorithms have been proposed, however all of these al-
gorithms have an infeasible runtime or space complexity.
An overview on the complexity of recent (r-contiguous)
detector generating algorithms can be found in [3].

In this paper we begin to address the question : is

it possible to generate r-contiguous detector efficiently ?.

Thomas Stibor is with the Department of Computer Science,
Darmstadt University of Technology, 64289 Darmstadt, Germany
(email: stibor@sec.informatik.tu-darmstadt.de).

Jonathan Timmis is with the Department of Computer Science
and Department of Electronics, University of York, Heslington,
York, YO10 5DD, United Kingdom (email: jtimmis@cs.york.ac.uk).

Claudia Eckert is with the Department of Computer Science,
Darmstadt University of Technology, 64289 Darmstadt, Germany
(email: eckert@sec.informatik.tu-darmstadt.de).

In previous works, Esponda et al. [4], [5] have shown
the connection between the boolean satisfiability problem
(SAT) and a negative database1. In this paper we special-
ize the approach presented in [4], [5]. More specifically,
we show that the problem of generating r-contiguous
detectors can be transformed in a k-CNF satisfiability
problem. Through this, we can begin to understand
in a deeper way, issues surrounding the generation of
detectors using r-contiguous matching rule.

In this paper, we also report a revised result on the r-
contiguous matching probability between two randomly
drawn bit-strings, as noticed by Ranang [6]. The paper is
organized as follows : we introduce the original negative
selection approach in section II. In section III the r-
contiguous matching rule is formally described and the
revised result on the r-contiguous matching probability is
reported. Additionally, set partitioning is presented when
applying negative selection in conjunction with the r-
contiguous matching rule. The k-CNF satisfiability prob-
lem is outlined in section IV and the link to r-contiguous
detectors in made in section V. In section V-A we demon-
strate how statements on boolean unsatisfiability can
be applied in the context of no generable r-contiguous
detectors. Moreover in section V-B statements on the
complexity of r-contiguous detector generation are dis-
cussed, and impacts on negative selection algorithms are
considered in section V-C.

II. Negative Selection Principle

The immune negative selection process is a mechanism
employed to help protect the body against self-reactive
lymphocytes. This process inspired Forrest et al. [7] to
propose a negative selection algorithm to detect data ma-
nipulation caused by computer viruses. The basic idea is
to generate a number of detectors in the complementary
space, and then to apply these detectors to classify new
(unseen) data as self (no data manipulation) or non-self
(data manipulation). The negative selection algorithm
proposed by Forrest et al. is illustrated in figure 1 and
summarized in the following steps.
Given an universe U which contains all unique bit-strings
of length l, self set S ⊂ U and non-self set N ⊂ U , where

U = S ∪ N and S ∩ N = ∅.

1) Define self as a set S of bit-strings of length l in U .

1representing bit-strings in a compress form in the complemen-
tary Hamming space

Self Set S

Generate Random

ts

Match

Reject

yes

no
Detector Set D

Bit-Strings

(a) Generation of Detector Set

Self Set S
Match

yes

no

Detector Set D

Protected

Non-Self

Detected

(b) Monitor Protected Strings for Manip-
ulation

Figure 1. Negative selection algorithm proposed by Forrest et al.

2) Generate a set D of detectors, such that each fails
to match any bit-string in S.

3) Monitor S for changes by continually matching the
detectors in D against S.

By considering this negative selection algorithm, espe-
cially with regards to step (2), a fundamental question
arises : how are detectors generated efficiently ?. Of
course, to answer this question we require a matching rule
which defines a “match” between two bit-strings from U .

III. R-Contiguous Matching Rule

The r-contiguous matching rule was proposed by Per-
cus et. al [8]. It abstracts the process of the binding
between an antibody and an antigen, and computes an
affinity between the two. From a chemical point of view,
an antibody and an antigen are a sequence of amino
acids. An antibody recognizes an antigen, when over a
certain sequence-length, a number of amino acids are
identical in both substances. By coding amino acids as
bit-strings, a formal match between antibody and antigen
can be defined as follows :

Definition 1: An element e ∈ {0, 1}l with e =
e1e2 . . . el and detector d ∈ {0, 1}l with d = d1d2 . . . dl,
match with r-contiguous rule, if a position p exists where
ei = di for i = p, . . . , p + r − 1 and p ≤ l − r + 1.
Informally, two elements, with the same length, match if
at least r contiguous characters are identical.

Example 1:
0 1 1 0 1 0 1 = u1

0 0 1 0 1 1 0 = u2

Example (1) illustrates a r-contiguous match for r = 3
between bit-string u1 and u2 both of length l = 7.

A. Revised R-Contiguous Matching Probability

The algorithm proposed first for the generation of r-
contiguous detectors was a simple random search [7].

A bit-string (candidate detector) was randomly drawn
from U and matched against all bit-strings in S. If no
match occurred, then the detector was stored in the
detector set D (see Fig. 1(a)). To estimate the number
of detectors which must be drawn to obtain a number of
suitable (censored) detectors, a probabilistic analysis was
proposed by Forrest et al. [7]. This analysis was based on
results proposed by Percus et al. [8].

Percus et al. [8] approximate the probability PS that
a random detector recognizes2 a random antigen with

PS = m−r [(l − r)(m − 1)/m + 1] (1)

where m is the alphabet size and l, r the parameters from
definition (1). Percus et al. mentioned that term (1) is a
proper approximation when m−r ≪ 1, as the probability
of long matching region in antibody-antigen matching is
very small. Percus et al. argument is of course correct,
when regarding antibody-antigen matching regions from
a pure immunological point of view. However, applying
this argument naively and unverified to artificial immune
system is dangerous and can lead to incorrect results.
Approximation (1) has been shown not to be correct for
r ≤ l.

The correct probability approximation3 for r ≤ l and
alphabet size 2 was originally derived by William Feller
and is presented in his textbook [9]. To approximate the
probability that a randomly drawn bit-string recognizes
(when using the r-contiguous matching rule) a randomly
drawn bit-string is formally defined by Feller [9] as
follows :

“A sequence of n letters S and F contains as many S-runs

of length r as there are non-overlapping uninterrupted

blocks containing exactly r letters S each”.

Given a Bernoulli trial with outcomes S (success) and F
(failure), the probability of no success running of length
r in l trials is according to Feller

1 − px

(r + 1 − rx)q
·

1

xl+1
(2)

where

p = q =
1

2
and x = 1 + qpr + (r + 1)(qpr)2 + . . .

as term (2) gives the probability of no success run of
length r in l trials, the correct approximation that a
random detector recognizes with r-contiguous matching
rule a random antigen results in

PWF = 1 −

(
1 − px

(r + 1 − rx)q
·

1

xl+1

)
(3)

We would like to emphasize here that the link between
r-contiguous matching rule and term (2) was first demon-
strated by Ranang [6] — we have summarized his results

2with r-contiguous matching rule
3also presented (slightly different) in Ranang master thesis [6]

r

PS

PWF

r-
co

n
ti
g
u
o
u
s

m
a
tc

h
in

g
p
ro

b
a
b
il
it
y

0
2

2

4

4

6

6

8 10 12 14

1

3

5

Figure 2. Difference between Percus et al. and Feller’s (probability)
approximation for l = 49 and r = {2, . . . , 15}

in this section. Ranang showed that for m = 2, l = 49
and r = 4 the approximation (1) results in

PS = 2−4

[
(49 − 4)(2 − 1)

2
+ 1

]
= 1.46875

which is greater than 1 and therefore does not describe
a probability distribution. Verifying term (3) for l = 49
and r = 4 results in PWF ≈ 0.82. The difference between
term (1) and (3) for small values of r is very large (see
Fig. 2). When a certain value for r is reached, both
terms adjust and decrease asymptotically to 0 — this was
probably the reason that nobody except Ranang noticed
this incorrect approximation for r ≤ l. For the sake of
completeness, we have to mentioned that Wierzchoń [10]
has noticed this, and showed that approximation (1) is
only valid when r ≥ l/2.

B. Coherence between Universe, Self, Non-Self and

arisen Holes

As outlined in the introduction, the immune system
discriminates between self and non-self, in part, as a
result of the process of negative selection. Through the
application of the r-contiguous matching rule in the
negative selection algorithm, an interesting set partition
occurs. Let U be an universe which contains all unique
bit-strings of length l and a self set S which contains
only one bit-string arbitrarily chosen. Let D be the set
of all generable r-contiguous detectors. In this case, the
following coherence holds:

U = N ∪ S , S ∩ N = ∅ and D ⊆ N

The detector set is a subset of the bit-strings from the set
N (see Fig. 3(a)). However, if S contains a certain num-
ber of distinct bit-strings then an additional set occur —
the set H of non-detectable bit-strings (see Fig. 3(b)).

N

S

U

D

(a) The universe
U is partitioned
in self set S
and non-self set
N only. The
r-contiguous
detectors from
D ⊆ N cover
all non-self
bit-strings from
the set N .

N

S

H

D

(b) S contains a
certain number
of distinct
bit-strings
which induces
holes from the
undetectable
set H. The
remaining holes
are induced by
a mixture of
bit-strings from
U .

S

H

(c) S contains
such a large
number of
distinct bit-
strings and
therefore U is
only partitioned
in S and H,
i.e. no detectors
are generable
at all and
all bit-strings
from U are
undetectable.

Figure 3. Coherences between universe U , self set S, non-self set
N , detector set D and hole set H

More specifically the following coherence holds:

U = N ∪ S ∪ H where

N ∩ S = ∅, N ∩ H = ∅, H ∩ S = ∅ and

D ⊆ N

If the cardinality of S reaches a certain number of bit-
strings, then the universe U will consist only of the sets
S and H (see Fig. 3(c)), i.e. no detectors are generable
at all. The set H represents bit-strings which are not

members of S and N . Bit-strings from H are termed holes
and occur when a certain number of distinct bit-strings
from S exist [11], [12]. More specifically, holes are induced
by distinct bit-strings from S and can be constructed
by the crossover-closure method [11], [12]. The idea
behind the crossover-closure is presented in example 2
and figure 4. Each bit-string s ∈ S is subdivided in l−r+1
substrings4 s[1, . . . , r], s[2, . . . , r+1], . . . , s[l−r+1, . . . , l]
and connected with a direct edge, if the last r − 1 bits
of s[i, . . . , r + i − 1] are matched5 with the first bits of
s[i + 1, . . . , r + i], for i = 1, . . . , l − r and all s ∈ S.
Substrings which are connected with a direct edge are
merged over r−1 equal bits to one bit-string of length l.

Holes are not only induced by bit-strings from S, but
also by bit-strings from N and bit-strings which are con-
structed by the crossover-closure of S. These additionally
holes can also be constructed with the crossover-closure
method. This is demonstrated in the following example
and illustrated in figures 4(b),4(c).

Example 2: Let l = 4, r = 2 and S = {s1, s2, s3},
where s1 = {0110}, s2 = {1010} and s3 = {1100}. One
can easily verify that only one r-contiguous detector is
generable, namely 0001. That implies that all bit-strings

4s[1, . . . , l] denotes characters of s at positions 1 . . . l
5equal bits

in the set6 {00 ∗ ∗, ∗00∗, ∗ ∗ 01} are detectable. On the
other hand, all bit-strings from U \{00∗∗, ∗00∗, ∗∗01}=
H ∪ S are not detectable.

In figure 4(a) one can see, that self bit-strings s1, s2 and
s3 induce the holes h1 = 1110 and h2 = 0100. Moreover
as illustrated in figure 4(b), the non-self bit-string n1 =
0011 and hole h1 = 1110 induce the additional hole h3 =
1111. The hole h4 = 1011 is induced by non-self bit-
strings n1, n2 and n3 (see Fig. 4(c)).

s1 =

s2 =

s3 =

01 11 10

10 01 10

11 10 00

= {0110, 1110, 1010}

= {1010, 0110, 1110}

= {1100, 0100}

= {s1, h1, s2}

= {s2, s1, h1}

= {s3, h2}

r − 1 r − 1

(a) Holes (h1 = 1110, h2 = 0100) are induced by self
bit-strings s1 = 0110, s2 = 1010 and s3 = 1100.

h1 =

n1 =

11

00

11

01

10

11

= {1110, 0010}

= {0011, 1111}

= {h1, n2}

= {n1, h3}

(b) An additional hole is induced by the constructed hole
h1 = 1110 and non-self bit-string n1 = 0011.

n1 =

n2 =

n3 =

11

10

01

01

01

00

00

00

10

= {0011, 1011}

= {0010, 1010}

= {1001, 0001}

= {n1, h4}

= {n2, s2}

= {n3, n4}

(c) The further hole h4 = 1011 is induced by non-self
bit-strings n1 = 0011, n2 = 0010 and n3 = 1001.

Figure 4. Holes constructed by means of the crossover-closer
method for bit-strings from sets N, S and H

The latter hole (h5 = 0111) can be constructed by
applying the crossover-closure with bit-strings s1 and h3.
This example illustrated that holes are not only induced
by bit-strings from S when applying the r-contiguous
matching rule, but also by bit-strings from U \ S.

IV. K-CNF Satisfiability

In this section we outline the k-CNF satisfiability prob-
lem and subsequently show how r-contiguous detectors
are related to the k-CNF satisfiability problem.

The boolean satisfiability problem is a decision prob-
lem and can be formulated in terms of the language

6the symbol * represents either a 1 or 0

SAT [13]. An instance of SAT is a boolean formula φ com-
posed of ∧ (AND), ∨ (OR), ·̄ (NOT), → (implications),
↔ (if and only if), variables x1, x2, . . ., and parentheses.
In SAT problems, one has to decide if there is some
assignment of true and false values to the variables that
will make the boolean formula φ true. In the following
sections, we will focus on boolean formulas in conjunctive
normal form.

A boolean formula is in conjunctive normal form
(CNF), if it is expressed as an AND-combination
of clauses and each clause is expressed as an OR-
combination of one or more literals. A literal is an
occurrence of a boolean variable x or its negation x.

Example 3:

(

literal︷︸︸︷
x1 ∨ x1 ∨ x2)︸ ︷︷ ︸

clause

∧ (x3 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

A boolean formula is in k-CNF, if each clause has exactly
k distinct literals. Example (3) shows a 3-CNF boolean
formula. A k-CNF boolean formula is satisfiable if there
exists a set of values (0 ≡ false and 1 ≡ true) for the
literals that causes it to evaluate to 1, i.e. the logical value
true. A possible assignment set of boolean values that
evaluate in example (3) to true is, x1 = 1, x2 = 1, x3 =
0, x4 = 0 (or expressed as a bit-string 1100). In k-CNF-
SAT, we are asked whether a given boolean formula in
k-CNF is satisfiable. It is known that for k > 2, k-CNF-
SAT is NP-complete [14], i.e. this problem is verifiable

in polynomial time, but nobody has yet discovered an
algorithm for solving7 k-CNF-SAT in polynomial time.

We will now consider a special subset of boolean
formulas in k-CNF which are defined as follows :

Definition 2: A k-CNF boolean formula φrcb is in l-k-
CNF, when φrcb has (l−k+1) clauses C1, C2, . . . , Cl−k+1

for 1 ≤ k ≤ l and k − 1 equal literals in Ci, Ci+1 for
i = 1, 2, . . . , l − k

C1 = (x1 ∨ x2 ∨ . . . ∨ xk)

C2 = (x2 ∨ x3 ∨ . . . ∨ xk+1)

...

Cl−k+1 = (xl−k+1 ∨ xl−k+2 ∨ . . . ∨ xl).

Example 4: Let l = 8, k = 3 and C1, C2, . . . , C6

7generating solutions in polynomial time which evaluate to 1

clauses with for instance randomly chosen literals

C1 = (x1 ∨ x2 ∨ x3)

C2 = (x2 ∨ x3 ∨ x4)

C3 = (x3 ∨ x4 ∨ x5)

C4 = (x4 ∨ x5 ∨ x6)

C5 = (x5 ∨ x6 ∨ x7)

C6 = (x6 ∨ x7 ∨ x8)

A boolean formula φrcb in l-k-CNF has then the following
form :

φrcb = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6

It can be seen that all possible boolean formulas in k-
CNF with (l−k+1) clauses, contain as a subset boolean
formulas in l-k-CNF, i.e. l-k-CNF ⊂ k-CNF.

Even though l-k-CNF ⊂ k-CNF, it is “simple8” to
satisfy a boolean formula φrcb in l-k-CNF. This can
be performed, by setting in the first clause C1 each
literal to true, and then subsequent in each clause
C2, C3, . . . , Cl−k+1 the last literal to true. With this
simple construction, it is possible to find a satisfiability
in runtime of Θ(l), where l is the number of variables.

V. Transforming r-contiguous detectors into

a k-CNF boolean formula

Recall r-contiguous detectors are bit-strings of length
l from U which do not match any bit-strings of length
l from S with the r-contiguous matching rule. In this
section, we show a transformation of arbitrary bit-strings
from S into l-k-CNF boolean formulas.

Let b ∈ {0, 1} and L(b) a mapping defined as :

L(b) →

{
x if b = 0
x otherwise

where x, x are literals.

Let k, l ∈ N, where k ≤ l and s ∈ {0, 1}l, where s[i]
denotes the bit at position i of bit-string s, and C(s, k) a
l-k-CNF transform mapping defined as :

C(s, k) → (L(s[1]) ∨ L(s[2]) ∨ . . . ∨ L(s[k])) ∧

(L(s[2]) ∨ L(s[3]) ∨ . . . ∨ L(s[k + 1])) ∧
...

(L(s[l − k + 1]) ∨ . . . ∨ L(s[l]))

For the sake of clarity we denote a boolean formula in
l-k-CNF which is obtained by C(s, k) for s ∈ S as φrcb.

Moreover we denote a boolean formula
∧|S|

i=1 φi
rcb which

is obtained by C(s1, k) ∧ C(s2, k) ∧ . . . ∧ C(s|S|, k) for

|S| ≥ 1 and all si ∈ S, i = 1, . . . , |S| as φ̂rcb. If |S| = 1,

8for one (self) bit-string

then φrcb ≡ φ̂rcb.

Proposition 1: Given an universe U which contains all
unique bit-strings of length l, a set S ⊂ U and the set
D which contains all generable r-contiguous detectors,
which do not match any bit-string from S. The boolean
formula φ̂rcb which is obtained by C(s, r) for all s ∈ S is
satisfiable only with the assignment set D.

Proof: Transforming s1 ∈ S with C(s1, k) in a l-k-
CNF, where k := r, results due to L(·) in a boolean
formula which is only satisfiable with bit-strings from
U \F1, where the symbol ∗ represents either a 1 or 0 and

F1 = {s1[1, . . . , r] ∗ ∗ . . . ∗︸ ︷︷ ︸
l−r

,

∗ s1[2, . . . , r + 1] ∗ ∗ . . . ∗︸ ︷︷ ︸
l−r−1

,

...

∗ ∗ . . . ∗︸ ︷︷ ︸
l−r

s1[l − r + 1, . . . , l]}

Transforming the remaining si = s2, s3, . . . , s|S| with

C(si, k) and constructing φ̂rcb = φ1
rcb ∧ φ2

rcb ∧ . . . ∧ φ
|S|
rcb

results in a boolean formula which is only satisfiable
with bit-strings from U \ (F1 ∪ F2 ∪ . . . ∪ F|S|). Each
r-contiguous detector from D has no matching bits
at si[1, . . . , r], si[2, . . . , r + 1], . . . , si[l − r + 1, . . . , l] for
i = 1, 2, . . . , |S|. Hence, φ̂rcb is only satisfiable with
assignment set U \ (F1 ∪ F2 ∪ . . . ∪ F|S|) = D.

Example 5: Let l = 5, r = 3 and S =
{s1, s2, s3, s4, s5, s6} with the following bit-strings :

s1 = {01011}, s2 = {01100}, s3 = {01110},

s4 = {10010}, s5 = {10100}, s6 = {11100}

Generating all possible r-contiguous detectors of length
l = 5 and r = 3 by given the self set S, one obtains the
detector set D = {d1, d2, d3, d4, d5} :

d1 = {00000}, d2 = {00001}, d3 = {11000},

d4 = {11001}, d5 = {00111}

Transforming all s ∈ S with C(s, r), one obtains :

φ1
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ2
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ3
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ4
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ5
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ6
rcb = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧

(x3 ∨ x4 ∨ x5)

φ̂rcb = φ1
rcb ∧ φ2

rcb ∧ φ3
rcb ∧ φ4

rcb ∧ φ5
rcb ∧ φ6

rcb

The boolean formula φ̂rcb is satisfied only with the
assignment set {00000, 00001, 11000, 11001, 00111} =
{d1, d2, d3, d4, d5} = D.

Of course it is possible to perform the reverse transfor-
mation when given φ̂rcb. However, a k-CNF boolean for-
mula which is in a non l-k-CNF can not be transformed
with this approach. This means that finding a satisfying
set for φ̂rcb is not “harder” then finding a satisfying set
for a boolean formula in non l-k-CNF. However this not

implies that finding a satisfying set for φ̂rcb is a NP-
complete problem.

A. Unsatisfiable CNF Formula and No Generable Detec-

tors

In this section, we use our obtained transformation
result (proposition 1) to demonstrate involving properties
on the number of generable r-contiguous detectors. An
example is the question : Given S and r, is it possible
to generate any detectors at all ?. By obtaining with
C(s, r) a boolean formula φ̂rcb in CNF, this question can
be answered by means of the resolution method [15], [16].
The resolution is a method for demonstrating that a CNF
formula is unsatisfiable, i.e. a deduction to the empty
clause (symbol �), or in our case that no detectors can
be generated. Roughly speaking, it is based on the idea of
successively adding resolvents to the formula. Resolvents
are clauses which do not modify the (growing) formula.

Specifically, let Ci and Cj be clauses and let x be a
literal which occurs in Ci and also occurs in Cj as x,
i.e. x ∈ Ci and x ∈ Cj . The resolvent of Ci and Cj is
C′

i ∪ C′
j , where C′

i := Ci \ {x} and C′
j := Cj \ {x}. For

example, (x1 ∨ x3) is the resolvent of (x1 ∨ x2) and
(x1 ∨ x2 ∨ x3).

Example 6: Let S contain the following bit-strings
{110, 000, 010, 001} and let r = 2. The obtained boolean

formula φ̂rcb results in

φ̂rcb = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧

(x1 ∨ x2) ∧ (x2 ∨ x3) ∧

(x1 ∨ x2) ∧ (x2 ∨ x3) ∧

(x1 ∨ x2) ∧ (x2 ∨ x3)

By applying the resolution method (see Fig. 5), one can
see that φ̂rcb is reduced to the empty clause �, i.e. φ̂rcb is
not satisfiable and therefore no detectors are generable.

(x1 ∨ x2) (x2 ∨ x3)

(x1 ∨ x3) (x2 ∨ x3)

(x1 ∨ x2) (x1 ∨ x2)

x2

(x1 ∨ x2)(x1 ∨ x2)

x2

�

Figure 5. Resolution method results in the empty clause � and
implies that bφrcb is not satisfiable

However, we would like to emphasize here, that
the resolution method for determining if detectors are
generable is interesting mainly from the theoretical point
of view. As unfortunely, it takes an exponential number
of resolution steps until an empty clause is obtained —
information on the complexity of the resolution method
is provided in [16].

Another approach to answer the question : is it possible
to generate any detectors at all ?, is to apply a variant of
the Lovász Local Lemma [16]. More specifically we define
according to [16], vbl(C) as the set of variables that occur
in clause C, i.e. {x ∈ V |x ∈ C or x ∈ C}, where V is a
set of boolean variables. Moreover, as defined in [16], the
neighborhood of C in φrcb is the set of clauses distinct
from C in φrcb that depend on C, or more formally :

Γφrcb
(C) := {C′ ∈ φrcb |C

′ 6= C and vbl(C)∩vbl(C′) 6= ∅}

Proposition 2: Let S be a set of bit-strings of length
l, where all s ∈ S are consisting of pairwise distinct
substrings s[1, . . . , r], s[2, . . . , r+1], . . . , s[l− r+1, . . . , l].
R-contiguous detectors are generable, if

|S| <
2r e−1 + 1

2r − 1

Proof: For each s ∈ S construct a boolean formula
φi

rcb in l-k-CNF by C(s, r). Construct a related k-CNF

boolean formula φ̂rcb = φ1
rcb ∧ φ2

rcb ∧ . . . ∧ φ
|S|
rcb.

Let Cj
i be the i-th clause in φj

rcb, 1 ≤ j ≤ |S|.
Cj

i has at most 2 (r − 1) many neighborhood clauses

in φj
rcb and at most (2 (r − 1) + 1) · (|S| − 1) many

neighborhood clauses in all remaining boolean formulas
φ1

rcb, φ
2
rcb, . . . , φ

j−1
rcb , φj+1

rcb , . . . , φ
|S|
rcb. In total this results in

|S|·(2r−1)−1 dependent clauses (see Fig. 6 on last page).

A variant of the Lovász Local Lemma [16] implies that
if |ΓF (C)| ≤ 2k−2, k ∈ N for all clauses C in a k-CNF
formula F , then F is satisfiable.

Applying the variant of the Lovász Local Lemma
results in

|S| · (2r − 1) − 1 ≤ 2r−2 < 2r/e

B. Complexity of l-k-CNF Satisfiability

As previously mentioned, a satisfiability for a boolean
formula in l-k CNF can be obtained in Θ(l). However,
in this case a boolean formula for exactly one bit-string
from S is constructed. If there are |S| > 1 distinct bit-
strings, then this simple method of finding a satisfiability
does not work.

In this paper, we will not propose an additional
r-contiguous algorithm and determine the complexity.
Rather, we attempt to answer the question, if it is
possible to generate r-contiguous detectors with a non-
exponential complexity in r.

By transforming the problem to generate r-contiguous
detectors into a k-CNF satisfiability problem, we assume
that at least Ω(2k) evaluations are required for finding a
complete assignment set, i.e. generating all possible de-
tectors. This assumption is justified thereby, that Ω(2k)
evaluations are required for finding a complete satisfying
set for the first clause of each s ∈ S. Additionally, the
remaining (l − r) clauses of each s ∈ S must be verified,
which in total could be done in O(|S| · 2k). We would
also like to emphasize here that this assumption is not
theoretically verified and requires further exploration.
However there is a strong evidence that at least Ω(2k)
evaluations are required for generating all generable de-
tectors, as no efficient algorithms (for k > 2) are known
which are able to solve the k-CNF satisfiability problem
in polynomial time. More specifically, as outlined in
section IV, the k-CNF satisfiability problem is a decision
problem, where the input is a boolean formula f and the
output is “Yes”, if f is satisfiable, and “No”, otherwise.
The currently fastest known deterministic algorithm that
decides the 3-CNF problem, runs in time O(1.473n) [17],
where n is the number of variables. The probabilistic
algorithm variant runs in time O(1.3302n) [18]. For
k = 4, 5, 6 the deterministic and probabilistic algorithms
runtimes become slightly worse [19].

We would like to emphasize here, that the (determinis-
tic and probabilistic) k-CNF algorithms proposed in [19],
[18] decides if a boolean formula is satisfiable, however
the algorithms not output all satisfiable assignment sets
— in our case, all generable detectors.

C. Impacts on Negative Selection Algorithms

The efficient generation of r-contiguous detectors is an
important building block in many negative selection ap-
proaches, and has been explored in the recent years inten-
sively [20], [21], [3]. However, all proposed r-contiguous
detector generating algorithms have a runtime or space
complexity which is exponential in r [3] — more specif-
ically it is O(2r). Using for instance a matching length
of r = 64 and |S| = 2(r/2) many self bit-strings, one
obtains an algorithm complexity which is infeasible to be
computationally practical. Combining our results from
this paper, with former complexity results, we believe
very strongly that generating r-contiguous detectors in
the negative selection can not be performed efficiently
and casts doubt on the use of such an approach on its
applicability in a large-scale, real-world scenario.

VI. Conclusion

In this paper we have demonstrated the link between
generating r-contiguous detectors and the k-CNF satis-
fiability problem. Specifically, we have shown that the
problem of generating r-contiguous detectors, when given
self set S and matching length r can be transformed
to an instance of the k-CNF satisfiability problem. The
assignment set of the boolean formula in k-CNF is di-
rectly linked to the generable r-contiguous detector set.
This result provides an interesting insight into better
understanding the problem of generating r-contiguous
detectors. Furthermore, results taken from the field of
boolean satisfiability can be utilized to study more for-
mally the problem of generating r-contiguous detectors.
In this paper we have demonstrated two utilize state-
ments in the context of unsatisfiability, i.e. no generable
detectors. Moreover, we have discussed the question,
are r-contiguous detectors efficiently generable. We have
conclude that at least Ω(2r) evaluations are required
to generate all possible detectors. This conclusion was
justified with the k-CNF satisfiability problem when
considering the first clause of each s ∈ S only.

Acknowledgment

Thomas Stibor would like to thanks Emo Welzl, for
his valuable suggestions and conversations that sparked
many of these ideas, especially the link to the variant of
the Lovász Local Lemma.

References

[1] E. Hart and J. Timmis, “Application areas of AIS: Past,
present and future,” in Proceedings of the 4th International
Conference on Artificial Immune Systems (ICARIS), ser. Lec-
ture Notes in Computer Science, vol. 3627. Springer-Verlag,
2005, pp. 483–497.

[2] L. N. de Castro and J. Timmis, Artificial Immune Systems: A
New Computational Intelligence Approach. Springer Verlag,
2002.

[3] M. Ayara, J. Timmis, R. de Lemos, L. N. de Castro, and
R. Duncan, “Negative selection: How to generate detectors,” in
Proceedings of the 1nd International Conference on Artificial
Immune Systems (ICARIS). Unversity of Kent at Canterbury
Printing Unit, 2002, pp. 89–98.

[4] F. Esponda, E. S. Ackley, S. Forrest, and P. Helman, “On-line
negative databases (with experimental results),” International
Journal of Unconventional Computing, vol. 1, no. 3, pp. 201–
220, 2005.

[5] F. Esponda, “Negative representations of information,” Ph.D.
dissertation, University of New Mexico, 2005.

[6] M. T. Ranang, “An artificial immune system approach to
preserving security in computer networks,” Master’s thesis,
Norges Teknisk-Naturvitenskapelige Universitet, 2002.

[7] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-
nonself discrimination in a computer,” in Proceedings of the
1994 IEEE Symposium on Research in Security and Privacy.
IEEE Computer Society Press, 1994.

[8] J. K. Percus, O. E. Percus, and A. S. Perelson, “Predicting the
size of the T-cell receptor and antibody combining region from
consideration of efficient self-nonself discrimination,” Proceed-
ings of National Academy of Sciences USA, vol. 90, pp. 1691–
1695, 1993.

[9] W. Feller, An Introduction to Probability Theory and its Ap-
plications, 3rd ed. John Wiley & Sons, 1968, vol. 1.

[10] S. T. Wierzchoń, “Discriminative power of the receptors acti-
vated by k-contiguous bits rule,”Journal of Computer Science
and Technology, vol. 1, no. 3, pp. 1–13, 2000.

[11] J. Balthrop, F. Esponda, S. Forrest, and M. Glickman, “Cov-
erage and generalization in an artificial immune system,” in
GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference. New York: Morgan Kaufmann
Publishers, 9-13 July 2002, pp. 3–10.

[12] T. Stibor, J. Timmis, and C. Eckert, “On the appropriateness
of negative selection defined over hamming shape-space as a
network intrusion detection system,” in Congress On Evolu-
tionary Computation – CEC 2005. IEEE Press, 2005, pp.
995–1002.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. MIT Press, 2002.

[14] K. R. Reischuk, Einführung in die Komplexitätstheorie. B.G.
Teubner Stuttgart, 1990.

[15] J. A. Robinson, “A machine-oriented logic based on the res-
olution principle,” Journal of the Association for Computing
Machinery (JACM), vol. 12, no. 1, pp. 23–41, January 1965.

[16] E. Welzl, “Boolean satisfiability — combina-
torics and algorithms,” 2005, lecture Notes
(http://www.inf.ethz.ch/∼emo/SmallPieces/SAT.ps).

[17] T. Brueggemann and W. Kern, “An improved deterministic
local search algorithm for 3-SAT,” Theoretical Computer Sci-
ence, vol. 329, no. 1–3, pp. 303–313, 2004.

[18] T. Hofmeister, U. Schöning, R. Schuler, and O. Watanabe, “A
probabilistic 3-SAT algorithm further improved,” in 19th An-
nual Symposium on Theoretical Aspects of Computer Science
(STACS), ser. Lecture Notes in Computer Science, vol. 2285.
Springer-Verlag, 2002, pp. 192–202.

[19] U. Schöning, “A probabilistic algorithm for k-SAT and con-
straint satisfaction problems,” in 40th Annual Symposium on
Foundations of Computer Science (FOCS). IEEE Press, 1999,
pp. 410–414.

[20] P. D’haeseleer, S. Forrest, and P. Helman, “An immunological
approach to change detection: algorithms, analysis, and im-
plications,” in Proceedings of the 1996 IEEE Symposium on
Research in Security and Privacy, IEEE Computer Society.
IEEE Computer Society Press, May 1996, pp. 110–119.

[21] S. T. Wierzchoń, “Generating optimal repertoire of antibody
strings in an artificial immune system,” in Intelligent Informa-
tion Systems. Springer Verlag, 2000, pp. 119–133.

φ1
rcb = (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧(xi∨xi+1∨...∨xi+r+1)∧...∧(xl−r+1∨xl−r+2∨...∨xl)

φ2
rcb = (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧(xi∨xi+1∨...∨xi+r+1)∧...∧(xl−r+1∨xl−r+2∨...∨xl)

... .

φj

rcb
= (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧

Cj
i︷ ︸︸ ︷

(xi∨xi+1∨...∨xi+r+1)︸ ︷︷ ︸
|Γ

φ
j
rcb

(Cj
i
)|=2(r−1)

∧...∧(xl−r+1∨xl−r+2∨...∨xl)

... .

φ
|S|
rcb

= (x1∨x2∨...∨xr)∧(x2∨x3∨...∨xr+1)∧...∧(xi∨xi+1∨...∨xi+r+1)∧...∧(xl−r+1∨xl−r+2∨...∨xl)

Figure 6. C
j
i has at most 2 (r − 1) many neighborhood clauses in φ

j
rcb

(r − 1 to left and r − 1 to
right) and at most (2 (r − 1) + 1) · (|S| − 1) many neighborhood clauses in all remaining boolean

formulas φ1
rcb

, φ2
rcb

, . . . , φ
j−1

rcb
, φ

j+1

rcb
, . . . , φ

|S|
rcb

.

