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Abstract—In the recent years, virtual machine introspection has
become a valuable technique for developing security applications
for virtualized environments. With the increasing popularity of
the ARM architecture and the recent addition of hardware virtu-
alization extensions there is a growing need for porting existing
tools to this new platform. Porting these applications requires
proper hypervisor support, which we have been exploring and
developing for the upcoming Xen 4.6 release. In this paper we
explore using ARM’s two-stage paging mechanisms with Xen to
enable stealthy, efficient tracing of guest operating systems for
security purposes.

I. INTRODUCTION

Over the last decade, significant research and development
efforts have been made to create out-of-band security systems
that leverage virtualization techniques. One of the unique
features virtualization offers is the ability to observe a running
operating system from an outside perspective, otherwise known
as Virtual Machine Introspection (VMI). By further merg-
ing the capability with forensics memory-analysis techniques
(FMA) [1], VMI is rapidly becoming a cornerstone of security
for virtualized systems.

A critical problem that VMI-based security applications
face is relying on data-sources that may have been tampered
with. The problem is well known when using FMA techniques
which often rely on information contained within the malicious
guest’s memory, thus also in direct reach of malware. As has
been shown over the years, the OS under VMI monitoring can
be subverted to break the assumptions made about the internal
behavior [2], [3], thus breaking the VMI tool’s capability to
accurately understand the state within the guest. These types of
problems have been cumulatively named the strong semantic
gap problem [4].

With the aid of hardware based virtualization extensions it
is however possible to overcome some of the limitations that
FMA systems face. By establishing in-band event delivery for
active observation of the guest’s execution, it is possible to ob-
serve binding events, such as process scheduling [5] and kernel
heap allocations [6]. However, such in-band delivery requires
proper hypervisor support, which has thus been absent from
the world of ARM virtualization. In this paper, we explore the
hardware properties of the ARM architecture and the internal
architecture of Xen, for which we have implemented such an
event delivery system.

The outline of this paper is as follows. In Section II we
briefly discuss relevant related work. In Section III we outline
the ARM MMU virtualization extension and discuss the re-
quirements to leverage this feature for active VMI. Continuing
in Section IV we highlight critical limitations of this subsystem

when used for execution monitoring. Afterwards we turn our
attention to planned future work in Section V, and finally we
provide some concluding remarks in Section VI.

II. RELATED WORK

While on today’s CPUs, both x86 and ARM, there are
a variety of options to establish in-band delivery based on
hardware events, it has been a challenge over the years to
find the combination of events which correspond to high-level
system behavior. For example, process scheduling events are
directly trappable by the hypervisor but system-calls aren’t [7],
[8]. The problem is largely due to the fact that the trappable
hardware events often do not directly correspond to the events
one actually wants to intercept, thus alternative settings need to
be configured to work around the hardware limitations. How-
ever, this often leads to side-effects in the form of overhead.

For example, Ether [7] proposed a set of mechanisms that
relied on changing paging permissions found in the shadow
page-tables to trigger violations which then can be trapped
to the VMM. Ether uses this mechanism to direct system
calls to pages that generate trappable pagefaults by changing
the SYSENTER_EIP_MSR register within the guest. However,
due to the granularity of page permissions, this often leads to
violations being triggered by events that were not the target,
thus adding overhead and potential pitfalls in case these events
need to be further filtered. Furthermore, shadow page table
based monitoring was only able to trace read/write memory
accesses performed by the guest.

Nitro [8] is another system that uses virtualization ex-
tensions to monitor system calls within the VM. Nitro,
similarly to Ether, also manipulates the guest state, but
instead of the SYSENTER_EIP_MSR, Nitro changes the
MSR_SYSENTER_CS used during SYSENTER to cause an
invalid value of 0 to be loaded into CS register. This in effect
causes a general protection fault leading to a VMEXIT. Similar
techniques were implemented for both interrupt-based and for
SYSCALL based system-calls. The benefit of Nitro’s approach
over Ether is that the faults it triggers are significantly fewer
then Ether’s page faults, leading to better performance. On the
other hand, Ether’s page permission based monitoring is more
flexible as it could also be used to trap other high-level events,
not just system calls.

CXPInspector [9] builds exclusively on the use of hardware
accelerated two-stage paging for execution tracing. Similar to
shadow-page tables, hardware accelerated two-stage paging
allows only for page-level granularity, however, it is now
directly supported by hardware, such as Intel’s Extended
Page Tables (EPT) extension. As two-stage paging adds an
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additional layer of paging where translation between guest
physical and machine physical addresses takes place, any
access violation within this layer will trigger a VMEXIT,
thus remaining transparent to the guest. Furthermore, this new
paging layer supports setting page permissions as a R/W or
execute, thus it provides more flexibility then shadow page
tables did. By marking certain pages non-executable (but
readable and writable), CXPinspector is able to monitor the
execution of the virtual machine (VM) with reduced overhead.
However, the use of two-stage paging for execution tracing has
been known to still add considerable overhead to the execution
of the VM, mainly as a result of the granularity that can be
set to trigger violations on.

SPIDER [10] evaluated the use of injecting software break-
points to enable stealthy debugging of processes within virtual
machines using the KVM hypervisor. SPIDER achieved signif-
icantly better performance than systems relying on two-stage
paging for execution tracing, mainly as a result of reducing
the scope of trapping. Similar to SPIDER, SPROBES [11]
identified the Secure Monitor Call (SMC) instruction as one
possible trapping mechanism for ARM. Unlike the exception
caused by the INT3 instruction on x86, SMC is limited
to trapping code-execution in supervisor mode (that is, the
execution of the guest kernel). Despite such a limitation,
it has been proposed as a sufficient method for real-time
kernel protection from the ARM TrustZone by researchers at
Samsung [12].

In our prior work titled "Multi-tiered Security Architecture
for ARM via the Security and Virtualization Extensions" [13]
we outlined our plans and system design for leveraging the
features discussed in the above mentioned related works. The
work presented herein details the technical advancements and
discoveries made in the effort to realize said architecture.

III. VMI WITH XEN ON ARM

The three main components of VMI, as outlined by
Garfinkel et al. [14], are Isolation, Interpretation and In-
terposition. Depending on the security application, Isolation
and Interpretation may already be sufficient. Thus, as first
step in our research effort we evaluated and ported existing
applications to achieve these two components. Isolation on
Xen is provided by the hypervisor natively, whereas security
tools can operate from the privileged domain dom0. However,
in many cases the security application - which may interact
with malicious data - is also required to be isolated from the
rest of the TCB. To achieve this, Xen provides a method
to achieve fine-grained disaggregation of the TCB via the
Xen Security Modules framework [15], with which we are
able to create domains with elevated privileges, but without
access to critical system resources and the hypervisor. XSM
is available for ARM based devices as well, thus achieving
effective Isolation has been easily accomplished.

For Interpretation our tool of choice has been the open-
source LibVMI library [16], which has been specifically de-
signed to interface with Xen and provide easy access to the
guest state through the hypervisor. LibVMI accomplishes this
today by utilizing a three-fold abstraction architecture: the

Fig. 1: 2-stage address translation

driver, the architecture and the OS layer. Effectively, the driver
interacts with the hypervisor’s API, the architecture layer
provides guest-virtual to guest-physical address translation,
and the OS layer provides reconstruction routines for standard
OS features. In our scenario, LibVMI lacked the required ARM
pagetable interpretation routines in the architecture layer. In
fact, the architecture layer itself was not clearly defined, thus
our efforts were focused on providing this extra abstraction
layer with the extended support for the ARM architecture,
which has been successfully ported. No modifications were
required for the other components of LibVMI and everything
else just worked as expected.

For effective Interposition, the third major component of
VMI, the security system needs to configure the hardware such
that it can transfer control to the security system at events
of interest. In the following, we discuss the requirements for
achieving such event delivery for two-stage paging based event
observation with one of today’s most popular open source
hypervisor, Xen [17]. As Xen is a bare-metal hypervisor,
the security system most likely runs in a privileged domain,
but outside the hypervisor. Thus, the hypervisor needs to be
extended to support the following features:

1) Setting and removing traps.
2) Customized trap handlers that understand native and

artificial traps.
3) Event delivery & event notification system.
Our main focus has been enabled monitoring via the two-

stage paging mechanisms, which is part of the standard ARM
virtualization extension. As previously discussed, two-stage
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paging allows custom permissions to be set in either stage
on the page-table entry (PTE) level. Violations in the first-
stage translation cause exceptions which can trap either to the
guest OS or the VMM, while exceptions on the second-stage
always trap into the VMM. An overview of this mechanism
is shown on Figure 1. The translation itself in both stages is
performed by the hardware, based on control registers. For
example, on x86 the guest CR3 register establishes which
translation table should be used for stage-1, while on ARM
the TTBR1 register is used for this purpose. Second stage
translation is performed similarly based on the value resulting
from the 1-stage translation, only this time the page-tables
reside in the VMM’s memory. The ARM PTE’s further allow
setting permissions on R/W accesses and also provide an NX
bit (eXecute Never).

Thus, to achieve monitoring of various memory accesses,
such as data- or instruction-fetch accesses, the hypervisor has
to expose a method to set custom permissions in the 2nd stage
translation for each PTE. Xen does provide such feature for
fully virtualized x86 machines (HVM) with Intel hardware
supporting Extended Page Tables (EPT). Xen’s internal system
which allows for setting these custom permissions is dubbed
mem access, which can optionally be enabled to deliver events
on page-faults encountered during the 2nd stage translations
via the vm event subsystem. The vm event subsystem uses a
shared-memory ring-buffer that can be subscribed to by an
observer application residing in a privileged domain. While
these systems have been pre-present in Xen, in order to utilize
them in the ARM architecture, both mem access and vm event
had to be brought several layers up into the Xen common code,
making it available for both x86 and ARM builds as well.

Significant differences have been encountered during the
architecture-specific implementation for setting PTE permis-
sions. On Intel EPT the custom permissions are stored in
the EPT PTE directly in bits 58-61. This is possible because
the EPT PTE entries have bits 52-62 available as software
programmable bits. When an access fault is trapped, Xen can
verify that the fault was triggered by the artificial traps, or by
an unrelated violation by checking if the fault matches what is
stored in the software programmable bits at 58-61. If it does,
it is verified that the trap is an artificial trap that needs to be
forwarded via vm event, otherwise the fault is injected back
into the guest. The ARM PTEs however have a lower number
of software programmable bits available, which are already
occupied by other Xen features, thus an alternative permission-
storage feature had to be implemented. The choice of storage
was a Radix-tree based binary-lookup tree, which optimizes
storage of the permissions while also providing rapid look-up
on violations, with the guest physical page frame number used
as the lookup key.

IV. SPLIT-TLB ON ARM

As virtual-to-physical address translation requires multi-
ple memory accesses to walk the pagetables, and thus it’s
computationally expensive, modern CPUs maintain a cache
for the translation results called the Translation Lookaside
Buffer (TLB). The TLB stores the translation results so that

subsequent lookups are sped up without having to walk the
pagetables. To further improve performance, modern CPUs
implement a version of the Harvard-style architecture, in which
a split-TLB separates the cache into two disjoint sets: the iTLB
stores translations for instruction fetches and the dTLB stores
translations for data fetches.

The split-TLB architecture over the years has been used
both for defensive and offensive purposes. The first system to
make use of the split TLB was GRSecurity’s PAGEEXEC [18]
feature in which they tackled the problem of marking a page
non-executable without explicit hardware support, like the NX-
bit in later CPUs. In recent years it has also been proposed and
used in similar fashion to ensure the integrity of code which
reside on pages that mix code and data segments [19], [20].

In prior-work the nature of the split-TLB on x86 has been
also proposed as a potential attack vector on VMI applications,
in case TLB tagging is implemented [2]. The hypothesis was
that in case the TLB entries remain intact after a VMEXIT/V-
MENTRY, a guest could maintain disjoint translation results in
the iTLB and the dTLB. As an external observer has no access
to the cached results directly, the VMI application would
have to rely on performing translations based on the page-
tables, which may no longer correspond the cached translation.
However, with the recent addition of a secondary victim-cache
on Intel CPUs, the sTLB, split-TLB based attacks are unreliable
on this architecture [21], [22]. The main reason why the sTLB
makes such attacks untenable, is because evicted iTLB/dTLB
entries both land in the combined sTLB cache, and in case
a subsequent lookup is performed, the entries from the sTLB
are brought back automatically to the iTLB/dTLB. In case both
the iTLB and dTLB entries are evicted into the sTLB, only
one version is retained, which is what will be brought back to
the iTLB/dTLB, effectively synchronizing the previously split-
TLB without triggered faults that may allow the malicious
guest to perform a re-split. On the ARM architecture TLB
entries are tagged with the VM’s ID and therefore survive
VMEXIT/VMENTRY operations; however, there is no sTLB
present, thus making split-TLB attacks a potential attack vector
against VMI applications.

Further problems can be foreseen in the nature of how the
ARM architecture reports access violations in the two-stage
paging mechanism. While on x86 the violating guest physical
address (GPA) is always reported, with the additional guest
virtual address (GVA) in case paging is enabled in the guest,
on ARM in most cases only the GVA is reported for violations.
GPA is only reported on ARM when the access fault was
triggered while the CPU was walking a stage-1 pagetable
(aka. stage-2 fault during stage-1 translation). However, as
you recall, our Radix-tree based mem access permission store
is keyed with the guest physical page frame numbers, that
can only be derived from the GPA. In order to translate the
violating GVA to a GPA to look up whether the violation was
triggered artificially or natively, the guest page tables have to
be walked again.

On ARM there are instructions available to perform only
stage-1 translation of a GVA to GPA, thus providing hardware
assisted look-ups for these operations. In contrast, there is
no such x86 functionality, there translations have to be done
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by software by walking the guest page tables. Furthermore,
performing GVA to GPA translation using hardware assisted
functions on ARM also utilizes the TLB, thus under normal
circumstances primed split-TLB entries should not affect the
translation. That is, even if the guest page-tables no longer
represent the translation that is cached in the TLB, using the
hardware functions guarantees that the second lookup will
result in the same translation irrespective of the modified page-
tables. One problem with this ARM lookup instruction is that
it performs the page-table look-up as a data-fetch accesses,
thus only has access to the dTLB. In case of instruction-fetch
access need to be looked up, the primed split-TLB presents
various problem scenarios, as the iTLB is inaccessible outside
the guest.

To illustrate the problem, let’s consider a split-TLB setup
where the primed dTLB entry points to a benign code-region
while the iTLB points to rootkit code, with the mem access
permission being set to alert when the rootkit code is executing.
When the rootkit code is being fetched from memory, a permis-
sion fault is triggered as the stage-2 PTE disallows instruction
fetches from the rootkit code. The fault handler within Xen
receives the violating GVA and performs a translation via the
hardware mechanism to obtain the GPA. The lookup will hit
the primed dTLB entry and result in a different translation than
what the actual violation-causing access cached in the iTLB is.
As Xen is unable to determine if the TLB is split, the resulting
translation may indicate that the code execution triggered a
native exception which results in the fault being injected into
the guest, forgoing notifications being sent via vm event. In
such a case, flushing the TLB before the translation can force
the translation to be performed based on the page-tables,
thus avoiding hitting the primed dTLB entry. Unfortunately,
when the iTLB is primed such that the page-tables no longer
represent the cached translation, flushing the TLB is ineffective
and the translation cannot be reproduced. This can further
aid the in-guest attacker in discovering the presence of an
external monitor, by observing which code executions trigger
an unexpected fault. Thus, two-stage paging based execution
(instruction-fetch) monitoring cannot be considered stealthy or
reliable at this time.

Incidentally, while evaluating the Xen assembly rou-
tines which perform the guest virtual to guest physical
address translation via the accelerated hardware functions
we have discovered a critical security vulnerability that
would have allowed guest systems running on 64-bit ARM
systems to potentially perform privilege escalation attacks.
The vulnerability has been assigned the advisory numbers
CVE-2014-3969/XSA-98v5 [23] and has been promptly
fixed by the Xen maintainers.

V. FUTURE WORK

Memory access events are only a subset of monitoring
techniques available on modern hardware and the ARM plat-
form has not yet been sufficiently explored to identify all
possibilities. One already identified candidate for execution
tracing is the injection of SMCs, which can be configured
to trap to the hypervisor. On Xen this instruction is already

configured to trap (by enabling bit 19 on the HCR_EL2
hypervisor configuration register), thus extending support to
deliver such events via vm event should be a relatively simple
addition.

Another critical limitation in memory access based trac-
ing is the necessity to allow the violation to progress. On
x86 there are two main options for achieving that: single-
stepping and emulation. In the case of single-stepping, the
custom permission setting on the 2nd stage PTE would be
relaxed and the hypervisor would enable the Monitor Trap
Flag (MTF) to allow one instruction to progress. However,
this method is only viable for single-vCPU systems, otherwise
there is a race-condition between the active vCPUs. A possible
solution for that would be to pause all other vCPUs while a
violating one is single-stepped. However, this solution results
in significant overhead. Emulation on the other hand doesn’t
require relaxing the custom permissions, thus avoids the need
of synchronization between vCPUs.

Unfortunately, with Xen on ARM neither options are avail-
able at this time. A potential solution to this problem is
the introduction of the altp2m subsystem, currently under
development for Xen jointly by us and Intel [24]. The altp2m
system allows defining multiple versions of the page-tables
used in the 2nd stage translation, thus allowing the tables to
remain intact - rather the vCPU’s "view" is switched from
one table to another. In such a setup, synchronization is not
needed between vCPUs thus the race-condition is averted.
Nevertheless, more research is required to properly identify
how the execution would be reverted to the restricted table
after a violation has progressed, otherwise relevant events may
go unnoticed.

VI. CONCLUSION

In this paper we presented an overview of ARM’s MMU
virtualization features and how to leverage this subsystem for
Virtual Machine Introspection with Xen. By developing the
feature for the upcoming Xen 4.6 release we have identified
several hardware limitations which can adversely affect the
reliability and stealth of external monitoring applications when
used improperly. We further discussed planned future work
which may overcome some of the issues herein identified.
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