

Falcon: Malware Detection and Categorization with Network Traffific Images

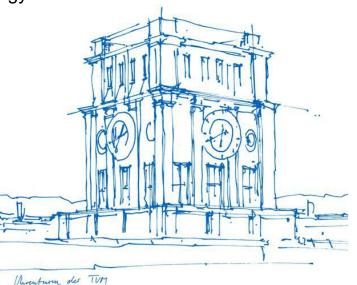
Peng Xu¹, Claudia Eckert¹, Apostolis Zarras²

{Peng,eckert}sec.in.tum.de

a.zarras@tudelft.nl

¹ Technical University of Munich

² Delft University of Technology



ТШП

Agenda

- Introduction
- Related Work
- System Design and Implementation
- Evaluation
- Limitation
- Conclusion

Introduction

Problems

- ✓ Android is the **main target** for many attackers who seek to exploit **new victims**
 - Sending spam emails, spreading new malware, generating revenue from online advertisements
- ✓ Continuous investigation on the Android malware detection and categorization
 - Static feature-based method: API-call-based, Permission-based, executable-patternbased, etc.
 - > **Dynamic feature**-based method: network-traffic-based, system-call tracing-based, etc.

Introduction

Motivation

- ✓ Static analysis
 - > Hidding vulnerabilities and malware invoked by 3rd-party libraries at runtime
- ✓ Dynmiac analysis
 - Port-, IP-address-based methods are too simple(Manual features) for the sophisticated malware
 - System-call-based methods are too expensive and inefficient
- ✓ Falcon: Efficient, dynamic analysis, and representation-learning based method

Introduction

Contribution

- ✓ present *Falcon*, a network-traffic-pattern-based Android malware detection and categorization framework;
- design a bidirectional LSTM network to accomplish 2D gray image sequence classification, which takes the network packets as input.
- ✓ create a dataset, *AndroNetMnist*, which includes 3,255,391 2D gray images in five classes for network traffic classification.
- ✓ evaluate the **accuracy** of our approach using real-world datasets

ТШ

Related Work

✓ Feature-code-based methods

✓ Feature-code-based methods

✓ Machine/Deep learning-based methods

Malicious API(Mainfest file) based methods

✓ Feature-code-based methods

- ✓ Machine/Deep learning-based methods
 - Malicious API(Mainfest file) based methods
 - Permission-based methods

✓ Feature-code-based methods

- Machine/Deep learning-based methods
 - Malicious API(Mainfest file) based methods
 - Permission-based methods
 - Program-code-based methods
 - Control flow graph-based
 - Function-call/API-call graph-based
 - Executable-file pattern-based

- ✓ Feature-code-based methods
- ✓ Machine/Deep learning-based methods
 - Malicious API(Mainfest file) based methods
 - Permission-based methods
 - Program-code-based methods
 - Network-traffic-based-methods

Design and Implementation ✓ Overview

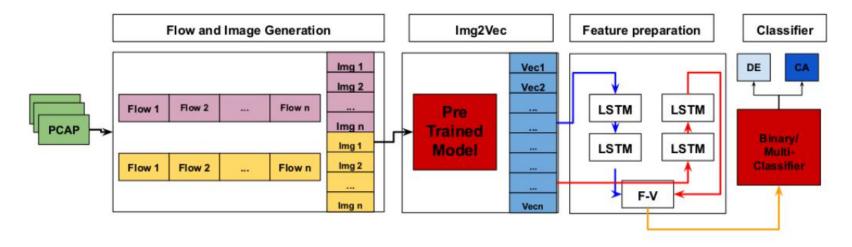


Fig. 1: The architecture of Falcon

feature vectors (F-V block in Figure 1) a classifier to detect (DE block) categorize(CA block)

Design and Implementation

✓ Overview

✓ Feature Extraction

- Network Traffic and Flow
 - Network Traffic Analysis
 D Package, Flow, Session
 - Network Flow: 5-tuple

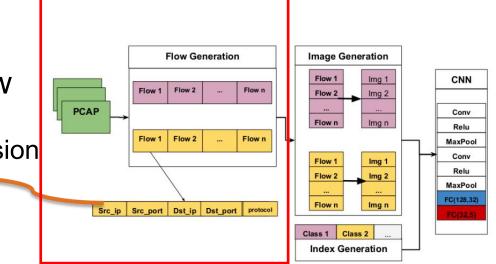


Fig. 2: Converting network traffic to vectors

Design and Implementation

✓ Overview

✓ Feature Extraction
> Network Traffic and Flow

Network Flows to Images

- Images:
 - **784**-Byte
 - Trimming and Padding
- Labels:
 - Five classes: one **benign** and four **malware**

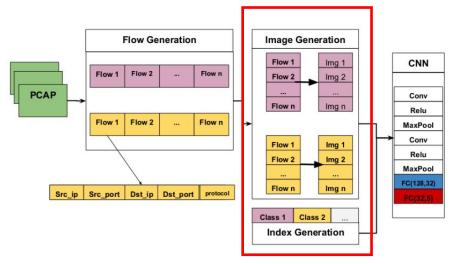


Fig. 2: Converting network traffic to vectors

CNN

Conv

Relu

MaxPool

Conv

Relu

MaxPool

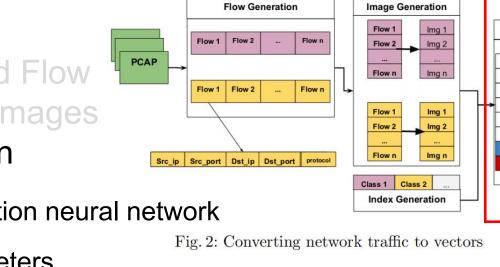
FC(128,32)

Design and Implementation

✓ Overview

- ✓ Feature Extraction
 ➢ Network Traffic and Flow
 ➢ Network Flows to Images
 - Feature Generation
 - an 8-layer convolution neural network
 - 70,213 total parameters

$$Y^{1} = MaxPooling_{2*2}(Relu(conv2d_{3*3}(X_{28*28})))$$
$$Y^{2} = MaxPooling_{2*2}(Relu(conv2d_{3*3}(Y^{1})))$$
$$Y^{3} = FC_{128,32}(Y^{2})$$
$$Y = FC_{32,5}(Y^{3})$$



Peng Xu, Claudia Eckert, Apsotlis Zarras | IT Security | Technical University of Munich

Design and Implementation

- ✓ Overview
- Feature Extraction
 - Network Traffic and Flow
 - Network Flows to Images
 - Feature Generation

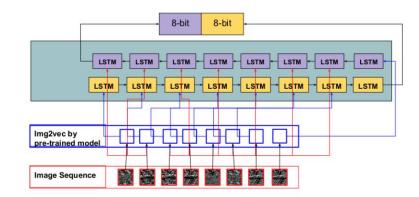


Fig. 3: 2D sequential image classification with bidirectional LSTM $\,$

- Continous Network Traffic
 - a **2D sequential image** classification
 - a **bi-directional LSTM** network
 - network traffic's continuous characteristics

Design and Implementation

✓ Overview✓ Feature Extraction

✓ Model Training and Prediction

$$Loss = -\sum_{N}^{i=1} y_{i_{label}} * \log(y_{i_{pred}})$$
$$= -\sum_{N}^{i=1} y_{i_{label}} * \log(\langle (\langle f_v, w_{i1} \rangle + b_{i1}), w_{i2} \rangle + b_{i2})$$

 $sparse_categorical_crossentropy$ loss function $w_{i1}, w_{i2} \in \mathbb{R}^p$ is the weight of the classifier $b_{i1}, b_{i2} \in \mathbb{R}^p$ is the offset from the origin of the vector space

ТШП

Evaluation

- ✓ Experimental Setup
 - ✓ Platform
 - Linux X86-64
 - ▶ 128 GB RAM and 16 GB GPU
 - ✓ Software
 - Tensorflow 2.0.0-beta0
 - ➤ Keras 2.2.4
 - Sklearn 0.20.0
 - SplitCap
 - ➢ pillow 6.1.0
 - ➤ numpy 1.16.4
 - matplotlib 3.1.1

✓ Experimental Setup

✓ Datasets

Name	Description	Number	
PCAP files	All the raw network traffic files	2,126	
Network flows	All network flows in Section 3.2	3,255,391	
Adware	Adware network flows partition	580,170	
Ransomware	Ransomware network flows	382,279	
Scareware	Scareware network flows	517,954	
SMSmalware	SMSmalware network flows	245.691	
Benign	Network flows for benign application	ns 1,529,297	

Table 1: Dataset explanation

426 malware and 1700 benign samples

Split the dataset with 80% training and 20% testing

✓ Experimental Setup

✓ Datasets

RF

✓ Results Comparison - Malware Detection

Classifier	Accuracy	Precision	Recall	F1
Drebin [3]	96.58	95.37	97.85	96.59
Adagio [10]	89.32	91.27	95.28	93.23
Droidmat [30]	89.87	90.89	88.28	89.56
CICAndMal2017 [13]	87.52	87.14	87.73	87.18
Falcon-CNN	98.04	98.09	98.05	98.06
Falcon	97.16	97.13	97.16	97.09

 Table 2: Malware detection comparison

 $n_{estimators} = 1400, min_{sample_{split}} = 5, max_{features} = "sqrt", max_{depth} = 80$

Peng Xu, Claudia Eckert, Apsotlis Zarras | IT Security | Technical University of Munich

✓ Experimental Setup

✓ Datasets

✓ Results Comparison - Malware Detection

Classifier	Accuracy	Precision	Recall	F1
Drebin [3]	96.58	95.37	97.85	96.59
Adagio [10]	89.32	91.27	95.28	93.23
Droidmat [30]	89.87	90.89	88.28	89.56
CICAndMal2017 [13]	87.52	87.14	87.73	87.18
Falcon-CNN	98.04	98.09	98.05	98.06
Falcon	97.16	97.13	97.16	97.09

Table 2: Malware detection comparison

Falcon-CNN cannot determine the **whole network flows characteristics** because most malicious behaviors are hidden in a **few network flows** by sophisticated attackers.

Peng Xu, Claudia Eckert, Apsotlis Zarras | IT Security | Technical University of Munich

✓ Experimental Setup

✓ Datasets

✓ Results Comparison - Malware Categorization

Table 3	: Maiware categ	orization comparison (the a	iverage	is weighted)
	Classifian	A agungay Dragision D		

Classifier	Accuracy	Precision	Recall	F1
CICAndMal2017 [13]	86.85	85.92	86.85	84.82
Falcon-CNN	97.23	97.28	97.23	97.24
Falcon	84.70	80.22	84.70	82.39

 $n_estimators=1400, min_sample_split=5, max_features="sqrt", max_depth=80$

Peng Xu, Claudia Eckert, Apsotlis Zarras | IT Security | Technical University of Munich

RF

✓ Experimental Setup✓ Datasets

Classifier	Settings
RF	n_estimators=1400, min_sample_split=5, max_features="sqrt", max_depth=80
AdaBoost	All default values
GradientBoost	lr=0.01, n_estimators=1500, max_depth=4, min_samples_split=40, max_features=4
MLP	sover="sqd", alpha=1e-5, hidden_layers_sizes=(400,400,200,100,10)
DecisionTree	min_samples_split=10, max_features="sqrt", max_depth=20

Table 4: Various classifiers settings

✓ Results Comparison - Various Classifiers

Classifier	Accuracy	Precision	Recall	F1
RF	97.16	97.13	97.16	97.09
AdaBoost	93.13	92.81	93.13	92.85
GradientBoost	96.88	96.83	96.88	96.80
MLP	91.01	90.48	91.01	90.02
DecisionTree	93.66	93.64	93.66	93.65

Table 5: Falcon's performance with various classifiers

Limitation

- ✓ Dataset
 - Dynamic Network Flow dataset: small number
 - Samples classes: only **four** malware types and one benign

Limitation

✓ Dataset

- ✓ Time efficiency
 - Time consumption: more time comsumption than port-based method

Conclusion

- ✓ present *Falcon*, a network-traffic-pattern-based Android malware detection and categorization framework;
- ✓ design a bidirectional LSTM network to accomplish 2D gray image sequence classification, which takes the network packets as input.
- ✓ create a dataset, *AndroNetMnist*, which includes 3,255,391 2D gray images in five classes for network traffic classification.
- ✓ evaluate the **accuracy** of our approach using real-world datasets

ТUП

Thank you !!! Questions? Comments?