MANIS: Evading Malware Detection System on Graph Structure

Peng Xu¹, Bojan Kolosnjaji¹, Claudia Eckert¹, Apostolis Zarras² {peng, kolosnjaji, eckert}@sec.in.tum.de, apostolis.zarras@maastrichtuniversity.nl

¹ Technical University of Munich
 ² Masstricht University

- . Smartphones are now a basic life necessity
- Android is the world's dominant mobile operating system
- According to McAfee, the number of discovered Android malware has touched 2.5 millions in 2017, which led the overall mobile malware's tally to reach 25 millions

- . Smartphones are now a basic life necessity
- Android is the world's dominant mobile operating system
- According to McAfee, the number of discovered Android malware has touched 2.5 millions in 2017, which led the overall mobile malware's tally to reach 25 millions

- Smartphones are now a basic life necessity
- Android is the world's dominant mobile operating system
- According to McAfee, the number of discovered Android malware has touched 2.5 millions in 2017, which led the overall mobile malware's tally to reach 25 millions
- Existing Android Malware Detection techniques:
 - Signature-based and code matching techniques are obsolete
 - Context-based machine learning approaches are not adequate

Adversarial Machine learning

• Attack the machine learning system

. Poisoning attack

To the training step

. Evasion attack

To the testing step : Fast gradient sign method(FGSM), Jacobian Saliency Map Approach(JSMA)

. Adversarial Machine learning

• Attack the machine learning system

• Poisoning attack

. To the training step

. Evasion attack

https://blog.csiro.au/vaccinating-machine-learning-against-attacks/

. Adversarial Machine learning

• Attack the machine learning system

. Poisoning attack

. To the training step

. Evasion attack

. To the testing step

. Adversarial Machine learning

Attack the machine learning system

https://qdata.github.io/secureml-web/4VisualizeBench/

. Robustness of ML-based malware detection under adversarial noise

- . Robustness of ML-based malware detection under adversarial noise
- . Crafting the adversarial noise

- . Robustness of
- . Crafting the ad

. Manifest

. Permission

. Structural Information

- . Control Flow Graph(CFG)
- . Function Call Graph(FCG)
- . Program Dependence Graph (PDG)

Figure 1: Adagio malware detection. Top: Detection system includes six steps. Botton: 15-Dalvik instruction categories.

Figure 1: Adagio malware detection. Top: Detection system includes six steps. Botton: 15-Dalvik instruction categories.

Figure 1: Adagio malware detection. Top: Detection system includes six steps. Botton: 15-Dalvik instruction categories.

$$h(v) = r(\ell(v)) \oplus \left(\bigoplus_{z \in V_v} \ell(z) \right)$$

http://www.prosec-project.org/docs/2013b-aisec.pdf

Figure 1: Adagio malware detection. Top: Detection system includes six steps. Botton: 15-Dalvik instruction categories.

5404 -> [001-0101-0001-1100]

Figure 1: Adagio malware detection. Top: Detection system includes six steps. Botton: 15-Dalvik instruction categories.

 $\{[1111111111]_{11}[0]_{(max^{*}5404 - 11)}$

Figure 1: Adagio malware detection. Top: Detection system includes six steps. Botton: 15-Dalvik instruction categories.

Figure 1: Adagio malware detection. Top: Detection system includes six steps. Botton: 15-Dalvik instruction categories.

$$h(v) = r(\ell(v)) \oplus \left(\bigoplus_{z \in V_v} \ell(z)\right)$$
 {[111111111]₁₁[0]_(max*5404-11)

http://www.prosec-project.org/docs/2013b-aisec.pdf

. Mathematic Model

- Detection: Y = X*W + B = f(G)*W + B • Loss Function: $Loss = 1/N \sum_{i=1}^{N} Loss(f(G_i), y_i),$
- Adversarial noise: $|G_i^* G_i| < B$

$$\max_{G^*} Loss^*$$

$$Loss^* = 1/N \sum_{i=1}^N Loss(f(G_i^*), y_i)$$

$$G_i^* = G_i + \alpha * \xi^{ad\nu}(G_i),$$

N-strongest Nodes

•

- . Finding the nodes which has the largest influence
- . Injecting those nodes multiple times

. Gradient-Based Approach

- . Gradient computation
- . Direction vector

N-strongest Nodes

•

- . Finding the nodes which has the largest influence
- . Injecting those nodes multiple times

. Gradient-Based Approach

. Using gradient's direction

N-strongest Nodes

- . Initialization: Prepare the weights and find the node(s) which have the minimum weight value
- . Injection operation
 - . Boolean Representation of the n-strongest node(s)
 - . Injecting the bool representation of n-strongest node(s) at neighborhood hashing step
 - . Feature embedding histogram with the injected n-strongest node(s)
 - . Histogram and non-histogram extension with the injected n-strongest node(s)
 - Classifier
 - $|Gi G^*i| < B$ and Y = -1

Gradient-based Approach

. Requirements:

- R1: The occurrence of graph's node cannot be expressed less than zero
- R2: In histogram extension mode, all "1" should align at the beginning of P-dimensional vector
- . R3: Cannot reduce the original occurrence of graph's nodes in order to keep the functionalities

Gradient-based Approach

. Requirements

- . Crafting methods
 - . Gradient Computation : direction vector

Gradient-based Approach

. Requirements

•

- . Crafting methods
 - Gradient Computation : direction vector

 $\min_{n} f(G_{h})$ $s.t.d(G_{h}, G'_{h}) \le m,$ $f(X) = (X * W + B - Y)^{2},$

Gradient-based Approach

. Requirements

•

- . Crafting methods
 - Gradient Computation : direction vector

 $\min_{n} f(G_{h})$ s.t.d(G_h, G'_{h}) \le m, $f(X) = (X * W + B - Y)^{2},$ $\nabla f(X)/X$

Gradient-based Approach

. Requirements

- . Crafting methods
 - Gradient Computation : direction vector
 - Gradient vector adjusting

Gradient-based Approach

. Requirements

•

- . Crafting methods
 - Gradient Computation : direction vector
 - . Gradient vector adjusting
 - Node Projection

 $\nabla f(X)/X$

Gradient-based Approach

. Requirements

•

- . Crafting methods
 - Gradient Computation : direction vector
 - . Gradient vector adjusting
 - Node Projection

 $\nabla f(X)/X$

Gradient-based Approach

. Requirements

•

- . Crafting methods
 - Gradient Computation : direction vector
 - . Gradient vector adjusting
 - Node Projection

 $\nabla f(X)/X$

(b)

 $\nabla f(X)/X$

Gradient-based Approach

. Requirements

- . Crafting methods
 - Gradient Computation : direction vector
 - . Gradient vector adjusting
 - Node Projection

Gradient-based Approach

Requirements

- Crafting methods
 - . Gradient Computation : direction vector
 - . Gradient vector adjusting
 - Node Projection

Dataset

.

•

•

- Benign: 49,947(AndroZoo + VirusTotal)
- Malware: 5,560(Drebin)
- Five folds

White-box and gray-box

- While-box: access all of information
- Gray-box: can access limited information for the targeting classifier, but can get other classifier's information, which trained by other folds

Histogram extension and Non-histogram extension

Including the histogram extension or not

Strongest nodes Number: 1, 2, 3, 4, 5

White-box and gray-box

Table 1: N-strongest nodes (non-histogram extension)

	Non-histogram extension(white-box)					Non-histogram extension(gray-box)					
Strongest nodes	1	2	3	4	5	1	2	3	4	5	
Injected nodes ratio (\overline{x})	22.7%	23.7%	17.6%	15.6%	25.7%	20.69%	21.25%	32.26%	17.76%	18.98%	
Injected nodes ratio (σ)	5.8%	22.3%	22.7%	22.1%	22.4%	5.19%	20.67%	27.93%	30.76%	32.87%	
Misclassified Rate (\overline{x})	72.2%	26.7%	26.6%	32.8%	40.8%	80.79%	49.43%	35.62%	21.14%	19.8%	
Misclassified Rate (σ)	15.4%	28.4%	34.1%	43.7%	42.5%	4.9%	42.9%	25.9%	25.6%	26.8%	

- Injecting 22.7%(20.69%) one strongest node will get 72.2%(80.79%) misclassification with white-box(graybox) setting
- Injecting around 23% and 17% two- and three-strongest nodes will get 26% misclassification with white box, and 21.25%,32.26% injection two- and three nodes with get 49.43% and 35.62% misclassification
- Misclassification rates depend on the number of n-strongest nodes

Strongest nodes Number: 1, 2, 3, 4, 5

White-box and gray-box

Table 2: N-strongest nodes (histogram extension)

	hi	stogram e	extension	(white-bo	ox)	histogram extension(gray-box)					
Strongest nodes	1	2	3	4	5	1	2	3	4	5	
Injected nodes ratio (\overline{x})	24.30%	37.27%	18.51%	46.95%	40.24%	23.68%	22.38%	14.41%	25.88%	23.35%	
Injected nodes ratio (σ)	8.6%	8.2%	10.4%	11.3%	19.1%	24.94%	17.04%	13.17%	15.13%	14.52%	
Misclassified Rate (\overline{x})	6.01%	29.77%	6.97%	35.81%	17.65%	5.46%	21.33%	4.39%	4.70%	5.03%	
Misclassified Rate (σ)	1.89 %	22%	3.3%	27%	14%	3.71%	29.31%	1.21%	0.82%	0.77%	

- Misclassification rates with histogram extension are significantly lower than non-histogram extension
- Injecting two strongest nodes with 37.37%(21.33%) will cause around 30%(21.22%) misclassification with white-box(gray-box) setting
- White-box attacking gets better misclassification than gray-box setting

•

•

Gradient sign method

Parameter:
$$\alpha G_i^* = G_i + \alpha * \xi^{adv}(G_i)$$

threshold limit the number of injected nodes

White-box and gray-box

Table 3: Gradient sign method (non-histogram extension)

α	0.1				0.2		0.3			
threshold	< 0.1	<= 0.1	<= 0.2	< 0.2	<= 0.2	<= 0.4	< 0.3	<= 0.3	<= 0.6	
			non	-histogram	m extensio	on (white-	box)			
Injected nodes ratio (\overline{x})	56.5x	17.48%	17.06%	51.8x	15.46%	14.82%	46.9x	14.22%	13.89%	
Injected nodes ratio (σ)	1.98	1.1%	1.1 %	2.74	1%	0.6%	59.74 %	1.4%	0.5%	
Misclassified rate (\overline{x})	79.6%	45.3%	39.68%	94.21%	47.46%	43.69%	98.07%	41.20%	42.17%	
Misclassified rate (σ)	5.2%	5.6%	1.9%	0.6%	3.7%	6.7%	2.6%	7%	0.2%	
		2	nor	n-histogra	m extensi	on (gray-l	oox)		-	
Injected nodes ratio (\overline{x})	59.62x	15.61%	15.35%	48.57x	14.72%	14.7%	50.09x	15.07%	15.26%	
Injected nodes ratio (σ)	4.71	1.18%	0.78 %	3.48	0.99%	0.98%	1.89	1.55%	1.86%	
Misclassified rate (\overline{x})	79.76%	37.59%	38.95%	96.06%	43.69%	44.18%	97.43%	44.65%	43.05%	
Misclassified rate (σ)	3.78%	7.95%	8.29%	2.08%	8.11%	8.23%	1.33%	8.43%	8.07%	

Table 3: Gradient sign method (non-histogram extension)

α	0.1				0.2	67.	0.3				
threshold	< 0.1	<= 0.1	<= 0.2	< 0.2	<= 0.2	<= 0.4	< 0.3	<= 0.3	<= 0.6		
			non	-histogram	m extensio	on (white-	box)				
Injected nodes ratio (\overline{x})	56.5x	17.48%	17.06%	51.8x	15.46%	14.82%	46.9x	14.22%	13.89%		
Injected nodes ratio (σ)	1.98	1.1%	1.1 %	2.74	1%	0.6%	59.74 %	1.4%	0.5%		
Misclassified rate (\overline{x})	79.6%	45.3%	39.68%	94.21%	47.46%	43.69%	98.07%	41.20%	42.17%		
Misclassified rate (σ)	5.2%	5.6%	1.9%	0.6%	3.7%	6.7%	2.6%	7%	0.2%		
		non-histogram extension (gray-box)									
Injected nodes ratio (\overline{x})	59.62x	15.61%	15.35%	48.57x	14.72%	14.7%	50.09x	15.07%	15.26%		
Injected nodes ratio (σ)	4.71	1.18%	0.78 %	3.48	0.99%	0.98%	1.89	1.55%	1.86%		
Misclassified rate (\overline{x})	79.76%	37.59%	38.95%	96.06%	43.69%	44.18%	97.43%	44.65%	43.05%		
Misclassified rate (σ)	3.78%	7.95%	8.29%	2.08%	8.11%	8.23%	1.33%	8.43%	8.07%		

- More than 1x injection ratio should be removed
- With threshold <=0.1 and <=0.2, we get around 40% misclassification ratio with 17%~14% node injection with white-box and gray-box

.

N: the different number of adjusted occurrence of a node

White-box and gray-box

Table 4: Gradient sign method (histogram extension)

	hi	stogram e	extension	(white-bo	x)	histogram extension(gray-box)				
N	1	2	3	4	5	1	2	3	4	5
Injected nodes ratio (\overline{x})	10.47%	22.05%	35.40%	35.42%	36.3%	9.52%	21.01%	33.11%	33.11%	33.11%
Injected nodes ratio (σ)	0.04%	2.23%	0.22%	1.49%	2.04%	0.4%	0.8%	1.05%	1.05%	1.05%
Misclassified rate (\overline{x})	21.12%	20.56%	22.3%	36.30%	33.49%	18.79%	18.79%	18.79%	18.79%	18.79%
Misclassified rate (σ)	5.8%	6.52%	6.63%	8.21%	11.93%	2.04%	2.04%	2.04%	2.04%	2.04%

- Misclassification rates with histogram extension are significantly lower than non-histogram extension
- Misclassification rates are around 20% with 10%~30% node injection with adjusted 1,2,3 nodes with whitebox setting
- Misclassification rates are 18.8% with different injected number under gray-box setting
- White-box attacking gets better misclassification than gray-box setting

•

Randomly selected nodes injections

White-box and gray-box

Table 5: Randomization method.

	non-histogram extension (white-box)						histogram extension(gray-box)				
Injected nodes ratio (\overline{x})	10%	20%	30%	40%	50%	10%	20%	30%	40%	50%	
Misclassified rate (\overline{x})	2.74%	1.92%	2.98%	2.55%	3.81%	1.87%	1.78%	1.78%	1.2%	1.73%	
Misclassified rate (σ)	0.93%	0.85%	1.5%	1.09%	1.83%	1.31%	0.99%	1.25%	0.73%	1.13%	

- Misclassification rates randomly selected node injected are very low, from 1.9%~3.8% with white-box setting, and from 1.2%~1.87% with gray-box setting
- The injected nodes ratios, from 10%~50%, do not affect misclassification rate significantly

Conclusion

•

•

•

Android Malware detection on graph structure

Adversarial example crafting for Android malware detection

- N-Strongest nodes
- Gradient-sign method

Limitation

- Only evaluate for the call function graph
- Graph kernel-hashing embedding