
MANIS: Evading Malware Detection System on Graph Structure

Peng Xu1, Bojan Kolosnjaji1, Claudia Eckert1, Apostolis Zarras2
{peng, kolosnjaji, eckert}@sec.in.tum.de,
apostolis.zarras@maastrichtuniversity.nl

1 Technical University of Munich
2 Masstricht University

Unrestricted

Motivation

● Smartphones are now a basic life necessity

● Android is the world‘s dominant mobile operating system

● According to McAfee, the number of discovered Android malware has touched 2.5
millions in 2017, which led the overall mobile malware‘s tally to reach 25 millions

Motivation

● Smartphones are now a basic life necessity

● Android is the world‘s dominant mobile operating system

● According to McAfee, the number of discovered Android malware has touched 2.5
millions in 2017, which led the overall mobile malware‘s tally to reach 25 millions

Motivation

● Smartphones are now a basic life necessity

● Android is the world‘s dominant mobile operating system

● According to McAfee, the number of discovered Android malware has touched 2.5
millions in 2017, which led the overall mobile malware‘s tally to reach 25 millions

● Existing Android Malware Detection techniques:

– Signature-based and code matching techniques are obsolete

– Context-based machine learning approaches are not adequate

Motivation

● Adversarial Machine learning

● Attack the machine learning system

● Poisoning attack

● To the training step

● Evasion attack

● To the testing step： Fast gradient sign method(FGSM), Jacobian Saliency Map Approach(JSMA)

https://www.ibm.com/blogs/research/2018/04/ai-adversarial-robustness-toolbox/

https://www.ibm.com/blogs/research/2018/04/ai-adversarial-robustness-toolbox/

Motivation

● Adversarial Machine learning

● Attack the machine learning system

● Poisoning attack

● To the training step

● Evasion attack

● To the testing step： Fast gradient sign method(FGSM), Jacobian Saliency Map Approach(JSMA)

https://blog.csiro.au/vaccinating-machine-learning-against-attacks/

https://blog.csiro.au/vaccinating-machine-learning-against-attacks/

Motivation

● Adversarial Machine learning

● Attack the machine learning system

● Poisoning attack

● To the training step

● Evasion attack

● To the testing step： Fast gradient sign method(FGSM), Jacobian Saliency Map Approach(JSMA)

https://arxiv.org/pdf/1712.07107.pdf

https://arxiv.org/pdf/1712.07107.pdf

Motivation

● Adversarial Machine learning

● Attack the machine learning system

● Poisoning attack

● To the training step

● Evasion attack

● To the testing step： Fast gradient sign method(FGSM), Jacobian Saliency Map Approach(JSMA)

https://www.ibm.com/blogs/research/2018/04/ai-adversarial-robustness-toolbox/
https://blog.csiro.au/vaccinating-machine-learning-against-attacks/

https://arxiv.org/pdf/1712.07107.pdf

https://qdata.github.io/secureml-web/4VisualizeBench/

https://www.ibm.com/blogs/research/2018/04/ai-adversarial-robustness-toolbox/
https://blog.csiro.au/vaccinating-machine-learning-against-attacks/
https://arxiv.org/pdf/1712.07107.pdf
https://qdata.github.io/secureml-web/4VisualizeBench/

Motivation

Motivation

● Robustness of ML-based malware detection under adversarial noise

Motivation

● Robustness of ML-based malware detection under adversarial noise

● Crafting the adversarial noise

Motivation

● Robustness of ML-based malware detection under adversarial noise

● Crafting the adversarial noise

Android Malware Detection on Graph Structure

● Manifest

● Permission

● Structural Information

● Control Flow Graph(CFG)

● Function Call Graph(FCG)

● Program Dependence Graph (PDG)

Android Malware Detection on Graph Structure

1

Android Malware Detection on Graph Structure

2

Android Malware Detection on Graph Structure

3

http://www.prosec-project.org/docs/2013b-aisec.pdf

http://www.prosec-project.org/docs/2013b-aisec.pdf

Android Malware Detection on Graph Structure

4

5404 -> [001-0101-0001-1100]

Android Malware Detection on Graph Structure

5

{[11111111111]11[0](max*5404 – 11)

Android Malware Detection on Graph Structure

6

Android Malware Detection on Graph Structure

1 2 3

http://www.prosec-project.org/docs/2013b-aisec.pdf

4

5404 -> [001-0101-0001-1100]

5

{[11111111111]11[0](max*5404 – 11)

6

http://www.prosec-project.org/docs/2013b-aisec.pdf

Android Malware Detection on Graph Structure

Evading Malware Detection on Graph Structure

● Mathematic Model

● Detection: Y = X*W + B = f(G)*W + B

● Loss Function:

● Adversarial noise: |Gi* - Gi | < ℬ

• N-strongest Nodes

● Finding the nodes which has the largest influence

● Injecting those nodes multiple times

● Gradient-Based Approach

● Gradient computation

● Direction vector

Evading Malware Detection on Graph Structure

• N-strongest Nodes

● Finding the nodes which has the largest influence

● Injecting those nodes multiple times

● Gradient-Based Approach

● Using gradient’s direction

Evading Malware Detection on Graph Structure

• N-strongest Nodes

● Initialization: Prepare the weights and find the node(s) which have the minimum weight value

● Injection operation

● Boolean Representation of the n-strongest node(s)

● Injecting the bool representation of n-strongest node(s) at neighborhood hashing step

● Feature embedding histogram with the injected n-strongest node(s)

● Histogram and non-histogram extension with the injected n-strongest node(s)

● Classifier

● |Gi – G*i| < ℬ and Y = -1

Evading Malware Detection on Graph Structure

• Gradient-based Approach

● Requirements:

● R1: The occurrence of graph’s node cannot be expressed less than zero

● R2: In histogram extension mode, all “1” should align at the beginning of P-dimensional vector

● R3: Cannot reduce the original occurrence of graph’s nodes in order to keep the functionalities

Evading Malware Detection on Graph Structure

• Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

Evading Malware Detection on Graph Structure

• Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

Evading Malware Detection on Graph Structure

• Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

Evading Malware Detection on Graph Structure

• Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

● Gradient vector adjusting

Evading Malware Detection on Graph Structure

• Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

● Gradient vector adjusting

● Node Projection

Direction vector Direction vector

Remove unrelated components

Evading Malware Detection on Graph Structure

• Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

● Gradient vector adjusting

● Node Projection

Direction vector Direction vector

Remove negative components

Evading Malware Detection on Graph Structure

• Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

● Gradient vector adjusting

● Node Projection

Direction vector Direction vector

Components occurance adjustion

Evading Malware Detection on Graph Structure

• Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

● Gradient vector adjusting

● Node Projection

Direction vector Direction vector Direction vector Direction vector

Remove unrelated components Remove negative components Components occurance adjustion

Evading Malware Detection on Graph Structure

Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

● Gradient vector adjusting

● Node Projection

R1

R2

Evaluation

• Dataset

• Benign: 49,947(AndroZoo + VirusTotal)

• Malware: 5,560(Drebin)

• Five folds

• White-box and gray-box

• While-box: access all of information

• Gray-box: can access limited information for the targeting classifier, but can get other classifier’s
information, which trained by other folds

• Histogram extension and Non-histogram extension

• Including the histogram extension or not

Evaluation

• Strongest nodes Number: 1, 2, 3, 4, 5

• White-box and gray-box

• Results:

• Injecting 22.7%(20.69%) one strongest node will get 72.2%(80.79%) misclassification with white-box(gray-
box) setting

• Injecting around 23% and 17% two- and three-strongest nodes will get 26% misclassification with white
box, and 21.25%,32.26% injection two- and three nodes with get 49.43% and 35.62% misclassification

• Misclassification rates depend on the number of n-strongest nodes

Evaluation

• Strongest nodes Number: 1, 2, 3, 4, 5

• White-box and gray-box

• Results:

• Misclassification rates with histogram extension are significantly lower than non-histogram extension

• Injecting two strongest nodes with 37.37%(21.33%) will cause around 30%(21.22%) misclassification with
white-box(gray-box) setting

• White-box attacking gets better misclassification than gray-box setting

Evaluation

• Gradient sign method

• Parameter:

•

• White-box and gray-box

Evaluation

• Results:

• More than 1x injection ratio should be removed

• With threshold <=0.1 and <=0.2, we get around 40% misclassification ratio with 17%~14% node injection with
white-box and gray-box

Evaluation

• N: the different number of adjusted occurrence of a node

• White-box and gray-box

• Results:

• Misclassification rates with histogram extension are significantly lower than non-histogram extension

• Misclassification rates are around 20% with 10%~30% node injection with adjusted 1,2,3 nodes with white-
box setting

• Misclassification rates are 18.8% with different injected number under gray-box setting

• White-box attacking gets better misclassification than gray-box setting

Evaluation

• Randomly selected nodes injections

• White-box and gray-box

• Results:

• Misclassification rates randomly selected node injected are very low, from 1.9%~3.8% with white-box
setting, and from 1.2%~1.87% with gray-box setting

• The injected nodes ratios, from 10%~50%, do not affect misclassification rate significantly

Evaluation

Conclusion

• Android Malware detection on graph structure

• Adversarial example crafting for Android malware detection

• N-Strongest nodes

• Gradient-sign method

• Limitation

• Only evaluate for the call function graph

• Graph kernel-hashing embedding

