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● Smartphones are now a basic life necessity

● Android is the world‘s dominant mobile operating system

● According to McAfee, the number of discovered Android malware has touched 2.5 
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Motivation

● Smartphones are now a basic life necessity

● Android is the world‘s dominant mobile operating system

● According to McAfee, the number of discovered Android malware has touched 2.5 
millions in 2017, which led the overall mobile malware‘s tally to reach 25 millions

● Existing Android Malware Detection techniques:

– Signature-based and code matching techniques are obsolete

– Context-based machine learning approaches are not adequate



Motivation

● Adversarial Machine learning

● Attack the machine learning system

● Poisoning attack

● To the training step

● Evasion attack

● To the testing step： Fast gradient sign method(FGSM),  Jacobian Saliency Map Approach(JSMA)

https://www.ibm.com/blogs/research/2018/04/ai-adversarial-robustness-toolbox/
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Android Malware Detection on Graph Structure

● Manifest

● Permission

● Structural Information

● Control Flow Graph(CFG)

● Function Call Graph(FCG)

● Program Dependence Graph (PDG)
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Evading Malware Detection on Graph Structure

● Mathematic Model

● Detection: Y = X*W + B = f(G)*W + B

● Loss Function:

● Adversarial noise: |Gi* - Gi | < ℬ

• N-strongest Nodes

● Finding the nodes which has the largest influence

● Injecting those nodes multiple times

● Gradient-Based Approach

● Gradient computation

● Direction vector
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• N-strongest Nodes

● Finding the nodes which has the largest influence

● Injecting those nodes multiple times

● Gradient-Based Approach

● Using gradient’s direction



Evading Malware Detection on Graph Structure

• N-strongest Nodes

● Initialization: Prepare the weights and find the node(s) which have the minimum weight value

● Injection operation

● Boolean Representation of the n-strongest node(s)

● Injecting the bool representation of n-strongest node(s) at neighborhood hashing step

● Feature embedding histogram with the injected n-strongest node(s)

● Histogram and non-histogram extension with the injected n-strongest node(s)

● Classifier

● |Gi – G*i| < ℬ and Y = -1



Evading Malware Detection on Graph Structure

• Gradient-based Approach

● Requirements:

● R1: The occurrence of graph’s node cannot be expressed less than zero

● R2: In histogram extension mode, all “1” should align at the beginning of P-dimensional vector

● R3: Cannot reduce the original occurrence of graph’s nodes in order to keep the functionalities
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● Crafting methods

● Gradient Computation : direction vector
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• Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

● Gradient vector adjusting

● Node Projection

Direction vector Direction vector Direction vector Direction vector

Remove unrelated components Remove negative components Components occurance adjustion
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Gradient-based Approach

● Requirements

● Crafting methods

● Gradient Computation : direction vector

● Gradient vector adjusting

● Node Projection

R1

R2



Evaluation

• Dataset

• Benign: 49,947(AndroZoo + VirusTotal)

• Malware: 5,560(Drebin)

• Five folds

• White-box and gray-box

• While-box: access all of information

• Gray-box: can access limited information for the targeting classifier, but can get other classifier’s 
information, which trained by other folds

• Histogram extension and Non-histogram extension

• Including the histogram extension or not



Evaluation

• Strongest nodes Number: 1, 2, 3, 4, 5

• White-box and gray-box

• Results:

• Injecting 22.7%(20.69%) one strongest node will get 72.2%(80.79%) misclassification with white-box(gray-
box) setting

• Injecting around 23% and 17% two- and three-strongest nodes will get 26% misclassification with white 
box, and 21.25%,32.26%  injection two- and three nodes with get 49.43% and 35.62% misclassification

• Misclassification rates depend on the number of n-strongest nodes



Evaluation

• Strongest nodes Number: 1, 2, 3, 4, 5

• White-box and gray-box

• Results:

• Misclassification rates with histogram extension are significantly lower than non-histogram extension

• Injecting two strongest nodes with 37.37%(21.33%) will cause around 30%(21.22%) misclassification with 
white-box(gray-box) setting

• White-box attacking gets better misclassification than gray-box setting



Evaluation

• Gradient sign method

• Parameter:

•

• White-box and gray-box



Evaluation

• Results:

• More than 1x injection ratio should be removed

• With threshold <=0.1 and <=0.2, we get around 40% misclassification ratio with 17%~14% node injection with 
white-box and gray-box



Evaluation

• N: the different number of adjusted occurrence of a node

• White-box and gray-box

• Results:

• Misclassification rates with histogram extension are significantly lower than non-histogram extension

• Misclassification rates are around 20% with 10%~30% node injection with adjusted 1,2,3 nodes with white-
box setting

• Misclassification rates are 18.8% with different injected number  under gray-box setting

• White-box attacking gets better misclassification than gray-box setting



Evaluation

• Randomly selected nodes injections

• White-box and gray-box

• Results:

• Misclassification rates randomly selected node injected are very low, from 1.9%~3.8% with white-box 
setting, and from 1.2%~1.87% with gray-box setting

• The injected nodes ratios, from 10%~50%, do not affect misclassification rate significantly



Evaluation



Conclusion

• Android Malware detection on graph structure

• Adversarial example crafting for Android malware detection

• N-Strongest nodes

• Gradient-sign method

• Limitation

• Only evaluate for the call function graph

• Graph kernel-hashing embedding


