
Verification of Software Barriers

Alexander Malkis Anindya Banerjee

IMDEA Software Institute

{alexandermalkis,anindya.banerjee}@imdea.org

Abstract

This paper describes frontiers in verification of the software barrier
synchronization primitive. So far most software barrier algorithms
have not been mechanically verified. We show preliminary results
in automatically proving the correctness of the major software
barriers.

Categories and Subject Descriptors D.2.4 [Software engineer-
ing]: Software/program verification—Correctness proofs; Formal
methods; Assertion checkers

General Terms verification, algorithms, reliability, theory

Keywords software, barrier, verification, invariant, safety, veri-
fier, counting, central, dissemination, tournament, static, combin-
ing, implementation, client

1. Introduction

The software barrier is a standard concurrency primitive. It enables
threads to synchronize in the following manner: if a thread calls the
barrier function, the barrier function starts waiting until all other
threads also call the barrier function. After all other threads have
called the barrier function, the waiting stops, and all the threads
are allowed to proceed with the instruction following the call to the
barrier function.

The barrier property we would like to verify is: if one thread
passes the barrier, all the other threads have already arrived at it.
The paper is devoted to proving just this fact for the major barrier
algorithms [1]. We present an overview of the results; the details
and the related work are deferred to the full paper version.

2. The simplest central barrier

A trivial implementation of the barrier involves a counter. The
counter is initially the number of (participating) threads and gets
decreased when a thread enters the barrier. Only when the counter
is zero are all the threads allowed to proceed. Each thread executes
thus the following code:

A : cnt−−; B : while(cnt 6=0); C :

We want to show that when one thread arrives at location C,
all the others are no more at location A. To show that, we need
the ability to express that at any time point in an execution of
the program, the value of cnt is at least the number of threads at

Copyright is held by the author/owner(s).

PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.

ACM 978-1-4503-1160-1/12/02.

location A, i.e., cnt≥|{t∈Tid |pc
t
=A}|. As of year 2011, no usable

automatic theorem prover can reason about such formulas.
To overcome this restriction, we syntactically convert the mul-

tithreaded program into a nondeterministic one working on sets A,
B, and C, where A (resp. B or C) is the set of threads whose cur-
rent control flow location is A (resp. B or C). The problematic for-
mula now turns into a benign cnt ≥ |A|, which lies in the QFBAPA
logic.

We have verified the central barrier in the verification system
Jahob.

3. Tree-based barriers

We will verify the static and combining tree barriers in Jahob.

Static tree barrier. In the static tree barrier threads operate on
a single tree, in which each thread is statically associated with a
distinct tree node, e.g.:

Thread 3

Thread 1

Thread 0 Thread 2

Thread 5

Thread 4

A thread proceeds in two phases: synchronization and wake-up.
A thread (say, number 1) starts in the synchronization phase by
waiting until its children (0 and 2) have synchronized, then telling
the parent (3) that the whole subtree (0,1, and 2) rooted at the thread
has synchronized, and then waiting for the wake-up command from
the parent (3). In the wake-up phase, once the parent (3) wakes
up the thread (1), the thread wakes up its children (0 and 2) and
proceeds with the instructions following the barrier call. The root
(3) does not wait for a wake-up at the end of its synchronization
phase; the static barrier algorithm guarantees that the root starts
waking up only if all the threads have started computation.

The threads convey signals via toggling boolean variables in the
tree nodes. The crucial part of the inductive invariant that is needed
to verify the barrier property speaks about the parent-descendant
relation as follows. If a node m (say, 0) is a descendant of a node n
(say, 3) and n has received signals from all its children (1 and 5) in
the synchronization phase, then m has already sent a signal to its
parent (1). This property is encodable in the WS2S logic.

Combining tree barrier. In the combining tree barrier each thread
is initially associated with a distinct leaf of a common tree, e.g.:

Thread 0 Thread 1

Thread 2

In the synchronization phase, threads start walking towards the
root of the tree from their leaves such that each thread eventually
begins waiting at a distinct node and such that exactly one thread
reaches the root. In the wake-up phase, the thread pointing to the

root initiates a wake-up process in which every thread stops waiting
and walks towards a leaf of the tree.

Each node of the tree contains a field cnt that stores the number
of threads that still have to arrive at the node; e.g., the common
parent k of the leaves of threads 0 and 1 starts with k→cnt = 2.
When some thread arrives at k first, it decrements k→ cnt to 1
and starts waiting for the wake-up. The next thread that arrives at k
diminishes k→cnt to 0, and, noticing the fact that no more threads
are going to arrive at k, proceeds to the parent of k. Notice that in
our picture, thread 2 decrements the counters of the nodes between
the initial leaf of thread 2 and the root (excluding both) from 1 to 0
without waiting.

The crucial part of the inductive invariant for the synchroniza-
tion phase is J = (∀ m∈Node: m→cnt ≥ S1+S2+S3) , where
S1 = |{t∈Thread | nt=m ∧ t is about to decrement m→cnt}| ,
S2 = |{m∈Node | m→parent=m ∧ m→cnt>0}| ,
S3 = |{t∈Thread | nt→parent=m ∧ t is about to go to m}| ,
where nt is the pointer into the tree of the thread t.

It is possible to encode J into WS2S for finitely many threads
and bounded degree of the tree nodes.

4. Array-based barriers

Now we will verify the dissemination and tournament barriers in
the verifier Boogie.

Dissemination barrier. In the dissemination barrier, a thread ex-
ecutes L = ⌈log

2
n⌉ synchronization rounds. In round i, thread

number t sends a signal to thread number (t + 2i)modn (where
modn gives the smallest nonnegative remainder after division by

n) and starts waiting for a signal from thread (t − 2i)modn. It
turns out that after L rounds, each thread x has received a signal
from every other thread y, either directly or transitively, i.e., some
thread z has received a signal (directly or transitively) from y and
sent its signal to x.

The threads send signals and wait for them as follows.

0 1 2 3 4 5Thread numbers:

Sending:

Waiting:
Round 0

Sending:

Waiting:
Round 1

Sending:

Waiting:
Round 2

Signals are stored in an array A : ((thread number)×(round
number))→bool. A crucial property that we had to prove automat-
ically is that if a thread t has received a signal in round l, then all

the threads which are less than t− 2l (including the wrapped ones)
by a certain amount have already started. Such a property is a uni-
versally quantified property over the two-dimensional array. This
property was approximated by a property in the AUFLIA logic and
handed over to the SMT theorem prover Z3.

Tournament barrier. A computation of the tournament barrier is
akin to a chess tournament: in each round, threads are partitioned
into couples, in each couple one of the threads wins and proceeds
to the next round, the other thread loses and starts waiting until
the winner comes back and wakes the thread up. If the number of
threads is not a power of two, threads without opponents skip cer-
tain rounds. The difference to the real tournament is that the winner
and the loser, as well as the couplings, are statically determined by
the bits of the thread identifiers (a nonnegative integer represented
by a bitstring). For example, six threads will synchronize as fol-
lows:

000
=0

001
=1

010
=2

011
=3

100
=4

101
=5Thread number

binary:
decimal:

Sending:

Waiting:
Round 0

Sending:

Waiting:
Round 1

Sending:

Waiting:
Round 2

After the champion (here: 000) has arrived at the last round, it will
wake up every thread that has lost to the champion directly during
the synchronization phase (here: 100, 010 and 001). Once a thread
is awake, it will wake up all the threads that have lost to it directly.

The signals are stored in an array A : ((thread identifier)×(round
number))→bool. The crucial property we needed to prove automat-

ically is that if A[t, l] is set and some thread t̂ loses to t transitively

till and including round l, then t̂ is waiting for the wake-up.

5. Central barrier coded in C

We will verify a C implementation of a central barrier in VCC:

shared int cnt = num threads; shared bool sense = false;
local bool local sense = false; // needed for wake−up and reinitialization.

void barrier() {
local sensê= true; // toggling, which means: no wake−up yet.

if(cnt−−>1) // assume atomic fetch−and−decrement.

while(sense!=local sense); // wait for the wake−up.

else{/∗Reinit and wake−up∗/ cnt=num threads; sense=local sense; }}

The necessary inductive invariant is similar to that of Section 2.
Currently, VCC cannot reason about cardinalities of set compre-
hensions, so we get rid of cardinalities. Instead, the code is aug-
mented with an auxiliary bijection between thread identifiers and
local states (a local state is a valuation of the program counter
and local sense) such that the threads that have not yet fetched-
and-decremented have identifiers below cnt. Namely, right after a
thread decrements cnt we swap the thread’s current identifier with
the thread number cnt by updating the aforementioned bijection.

6. A central barrier with a client

If the number of threads is small, as in the following example, and
if the implementation of a barrier uses only relatively few states,
as the barrier from .NET 4.0, exhaustive search may succeed. The
example is a simplification of a client from the MSDN library:

int x = 0; Barrier barrier = new Barrier(3);
barrier.AddParticipants(2); barrier.RemoveParticipant();
Action action = () => { Interlocked.Increment(ref x); // atomic x++

barrier.SignalAndWait(); Interlocked.Increment(ref x);
barrier.SignalAndWait(); Interlocked.Increment(ref x);
barrier.SignalAndWait(); Interlocked.Increment(ref x);
barrier.SignalAndWait(); assert(x==16); };

Parallel.Invoke(action, action, action, action); barrier.Dispose();

Here, four threads increment a variable x four times, calling
the barrier function after incrementing. The Spin tool has used
automata encoding and partial order reduction to prove no use-
after-disposal and that the value of x is 16 at the end of each thread.

Acknowledgments

We thank Ernie Cohen, Viktor Kuncak, Rustan Leino, Michał
Moskal, and Thomas Wies for help on Boogie, Jahob, and VCC.

References

[1] M. Herlihy and N. Shavit. The art of multiprocessor programming.
Morgan Kaufmann, 2008.

	Introduction
	The simplest central barrier
	Tree-based barriers
	Array-based barriers
	Central barrier coded in C
	A central barrier with a client

