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Abstract—Architectural styles and patterns play an important
role in software engineering. Over the last years, a new style
based on the notion of services emerged, which we call the
service-oriented architecture style. However, this style is usually
only stated informally, which may cause inherent problems such
as ambiguity, wrong conclusions, and the difficulty of checking
the conformance of a system to the style. We address these
problems by providing a formal, denotational semantics of the
service-oriented architecture style and two variants thereof: the
layered architecture style and the strict architecture style. Loosely
speaking, in our model of the service-oriented architecture style,
services are a means of communication. Components exchange
services between each other via ports. The layered architecture
variant imposes a well-foundedness constraint on the communica-
tion structure, while the strict variant imposes an antitransitivity
constraint. We analyze the notions of syntactic and semantic
dependencies for service-oriented architectures and investigate
their relationship. Moreover, the expected informal properties
of the styles are formulated as theorems. Finally, we present a
method for soundly analyzing instances of the style. Our rigorous
approach enables building higher-quality architectures, for which
properties can be mathematically stated and proven, by enforcing
formal discipline on the inter-component scale.

I. INTRODUCTION

Lack of discipline is one substantial technical source of
failures in a number of software projects [1], [2]. A poor
architecture can lead to a disaster for the whole project [3],
hence, “expanding formal relationships between architectural
design decisions and quality attributes” [4] has been identified
as a promising future direction to go for the field of software
architectures. We address the lack of discipline in architectural
design [5] by providing a formal model for an important
architectural style, namely, the service-oriented architecture
style.

While we aim at contributing to a rigorous theory of archi-
tecture styles, we believe that developments in this theory also
have implications for the practicing architecture researcher and
the prospective software architect. The software architecture
researcher can rely on a mathematical model when working
with styles, while the prospective architect obtains a solid
foundation for working with concrete architecture instances
at hand. A theory of styles would provide the architect with
a set of properties which allows one to decide whether a
system is actually built according to a specific style. (In our
case, such specific styles are the service-oriented architecture
style, its layered variant, or its strict variant.) Moreover, the
outcome of the analysis would provide the architect with a
set of properties one can trust in a system built according
to a style, for example, semantic independence of lower-level
layers from upper-level layers for systems built according to
the layered variant.

Our major contributions are as follows:
• an abstract model of the service-oriented architecture style

and some concrete instances thereof (§ IV).
• an in-depth analysis of the crucial notions of syntactic

(§ IV-B2) and semantic (§ IV-C) dependencies between the
components, including their interrelations.

• a fast method for proving properties of the semantics of the
components based on overapproximating the exact seman-
tics (§ IV-D).

• a rigorous definition of two common variants of service-
oriented architectures: the layered and the strict variant
(§ V).

• a rigorous analysis of the layered variant (§ V-A), showing
the conditions under which certain components maintain
their semantics after updating the behavior of one of the
components.

• a rigorous analysis of the strict variant (§ V-B), showing that
for the strict variant our fast proof method is in fact precise.
Our work aims to contribute to a rigorous theory of architec-

tural styles to provide a better understanding of architectural
styles and the formal relationships between architectural de-
sign decisions and quality attributes. Therefore, we directly
address the call to “expand the formal relationships between
architectural design decisions and quality attributes” [4] and
to disciplined architectural design [5].

II. APPROACH

In [6], we describe an approach to formalize architectural
styles. Based on the insight that each style requires its own
semantic domain [7], this approach roughly follows three main
steps:
1) Find a mathematical model which reflects the nature of

the style. This is probably the most difficult part, since
the model must reflect the fundamental characteristics of
a style. It should be as abstract as possible to allow the
results of later analyses to be applied to a broad range of
systems. If for some style an adequate model already exists,
this step can be skipped.

2) Provide a set of axioms for the model that constrain its
structure. Through the addition of new axioms it is possible
to specialize a style and investigate variations thereof. For
example, in the layered architecture variant, a configuration
is usually isomorphic to a directed acyclic graph. However,
we could add an axiom which restricts configuration to a
directed sequence of layers to get a description of the strict
version of the style.

3) Finally, we can analyze a style by means of mathematical
proofs. We can state characteristic properties for a style
and prove them from our model.



In the following we apply our approach to the service-oriented
style. According to step 1 of our approach, in [8] we first
provided an abstract, nonetheless precise model of the style
which is able to cope with different concrete service models.
In this article we mainly address steps 2 and 3 by investigating
different variants of the style. (Hereby, we also improve on
the details of the semantics and adopt a more mainstream
terminology in comparison to our prior investigation [8].)

III. RELATED WORK

There is a large body of work on service-oriented architec-
tures; we discuss next only a choice of the literature which is,
subjectively, most related to our work. We roughly categorize
related work in three main areas: approaches to formalization
of architectural styles, informal descriptions of the layered
architecture style, and existing formal analyses of architectural
styles.

Concerning analyzing architectural styles, our work is sit-
uated among the approaches to formalization of architectural
styles. Broadly speaking, we follow an approach based on
Abowd et al. [7]. In that work, the authors apply the general
approach of denotational semantics to software architectures
with the fundamental insight that each architectural style needs
its own semantic model. On this basis, Allen [9] provides
an architecture description language based on CSP [10] to
allow the specification and analysis of architectural styles.
Another related approach is developed by Moriconi et al.
in [11]. There, the authors use first-order logical theories to
describe architectural styles and so-called faithful interpreta-
tion mappings to relate different styles. In a further approach,
Le Métayer in [12] proposes to describe architectures as graphs
and architectural styles as graph grammars with the aid of
analyzing architecture evolution. Additionally, an interesting
approach applying category theory to formalize architectural
concepts is provided by Fiadeiro in [13]. Finally, Bernardo
et al. [14] propose the use of process algebras to formalize
architectural types, which are weaker forms of architectural
styles.

To build our model for layered architectures, we heavily
rely on the intuition provided by informal descriptions of the
layered architecture style. Some of the earliest documented
descriptions of the style can be found in the work of Shaw
and Garlan [15], where they identify a set of well-known styles
observed in industry. Taylor et al. [16] elaborate on that work
and distinguish between two kinds of layered architectures:
the virtual machines style and the client-server style. Finally,
practicing architects often report on styles and patterns they
are commonly empolying themselves. We consider [17] as one
well-known book of this kind.

While all such references provide the background for our
study, there is another line of research on existing formal
analyses of architectural styles which is closely related to
our work. Below we shortly list a few representatives of
such analyses. In [18], Garlan and Notkin provide a formal
basis for the implicit-invocation architectural style. The signal-
processing style is analyzed by Garlan and Norman in [19].

Moreover, we can find a formal description of the pipes-and-
filters style in the work of Allen and Garlan [20] and in Broy’s
Focus-theory [21]. The Enterprise Java Beans architectural
style is formally analyzed by Sousa and Garlan in [22]. In [11],
the dataflow style is related to the pipes-and-filters style,
the batch-sequential style, and the shared-memory style. The
client-server style is described by Le Métayer in [12]. Finally,
there are some formal analyses of the layered architecture
style. In [23], Zave and Rexford build a formal model of
layered architectures and use the Alloy Analyzer [24] to
analyze the style. In [25], Broy provides a model of services
and of layered architectures based on the Focus theory [21].

Our work is probably closest to [25], where a layer is a com-
ponent with an import and an export interface and a layered
architecture is a stack of several layers. Although that model
is an important contribution towards a better understanding
of layered architectures, the model represents computations
explicitly, namely using streams. Our model abstracts further
away from such details of computations, concentrating on the
major characteristics of the style, thus making the results ap-
plicable to several, different representations of computations.
If fact, our model is based on an abstract notion of a service,
and streams are just one possible realization thereof.

IV. A MODEL OF SERVICE-ORIENTED ARCHITECTURES

In this chapter, we provide a model of service-oriented
architectures based on ports and services. With this model,
we offer the basis for a rigorous analysis of the style. First,
in § IV-A, we provide basic definitions which lay the foun-
dation for our model. In § IV-B these definitions are used to
define architecture configurations, syntactic dependency, and
the semantics of components. In § IV-C we define the notions
of semantic dependency and investigate their interrelationships
with the syntactic dependency. Finally, in § IV-D we provide
a fast method to prove properties of a component’s semantics.

A. Foundations

This section provides the foundation for our model by
introducing several key concepts. We introduce the notion of
ports and services in § IV-A1 and define the notion of port val-
uations in § IV-A2. Then we provide a rigorous definition for
components in § IV-A3 and introduce selection and projection
operators in § IV-A4.

1) Ports and Services

For our model of service-oriented architectures, we assume
the existence of sets PORT and SERVICE which contain all
ports and services, respectively. Thereby, our notion of service
is rather abstract; a service can be everything, from a simple
procedure of a programming language to a complex web-
service consisting of a series of interactions. A port is just
a placeholder for a set of related services; one can think of
the procedure’s declaration (in the sense of a programming
language) or of the address of the web service. Thus, we as-
sume the existence of a function type: PORT→ ℘ (SERVICE),
(where ℘ (X) is the power set of a set X) which assigns a
type to each port. That is, the type of a port is simply a set
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bint mult(bint x, bint y) {
bint z := 0;
while (y>0) {

z := add(x,z);
y := sub(y,1);

}
return z;

}

o

i1

i2

Figure 1: Stateless

static map<pair<bint,bint>,bint> cache; // lookup table
bint mult(bint x, bint y) {

pair<bint,bint> p := make_pair(x,y);
if(cache.count(p)>0) // if lookup successful

return cache[p];
else { // if the current input has not been cached yet

bint z := 0;
while (y>0) {

z := add(x,z);
y := sub(y,1);

}
cache[p] := z; // store the result
return z;

}
}

o

i1

i2

Figure 2: Stateful

of services. We require that each port is classified either as an
input port or as an output port, but not as both. We let I be
the set of input ports and O be the set of output ports, such
that:

I ∪ O = PORT and I ∩ O = ∅ .

Ports and services constitute the parameters of our theory. By
saying what ports and services are, our theory can be applied
to different contexts.

In the following, let N+ be the set of positive integers, Z
the set of all integers.

Example IV.1 (Modeling stateless services). Consider the
code depicted in Fig. 1, where we write bint for bigint, a
programming language type of large but fixed-size integers.
We define the set of input ports as I = {i1, i2}, the set
of output ports as O = {o}, where the ports are function
declarations, i.e., simplifying, strings:
i1 = “bint add(bint,bint)”, i2 = “bint sub(bint,bint)”,
o = “bint mult(bint,bint)”.
Intuitively, a service at a port will be a (set-theoretic) map that
fits the declaration given by the port. Formally, we fix some
M ∈ N+ and let bint = [−2M , 2M−1], which we use as the
set of representatives of integers modulo 2M+1. The types of
the ports are sets containing certain partial or total maps from
bint×bint to bint :
• type(i1) is the singleton set containing exactly the modular

addition, which is defined for all arguments.

• type(i2) is the set containing partial and total maps whose
result coincides with that of modular subtraction whenever
the first argument is positive and the second is 1.

• type(o) is the set of total maps m that multiply the
arguments x, y modulo 2M+1 whenever y is nonnegative.
Such m must return some result also for negative y.

In this example, the types abstract away some details about
termination and outcome and all details about the way the
computations are performed.

If even more abstraction would be wished, we would
redefine the above types as, e.g., the set of all partial and total
maps from bint×bint to bint . In this alternative situation, the
correctness of a service provided by a component (here mult)
would depend on the correctness of the services required by a
component (here add and sub). That is, if these services would
not work properly, the service provided by a component would
not work as expected.

The above example does not use any global state. In a more
complex model, a component may also have an encapsulated
state, e.g. in class instances in object-oriented programming
languages. We can easily encode stateful models by changing
the notion of a service to relate streams of concrete values of
the input parameters to streams of concrete return values, as
we will see in Ex. IV.2.

In the following, we write N0 for the set of natural numbers
(including zero) and dom f for the domain of a (partial) map
f . Given a set X , the set of finite sequences over X will be
written as X∗, the set of infinite sequences will be written as
Xω (where the set of indices is the set of natural numbers),
and the set of streams over X is defined as the set of sequences
over X where the indices form a downward-closed subset of
natural numbers: X stream = X∗ ∪Xω .

Example IV.2 (Modeling stateful services). Continuing ex-
ample IV.1, let us assume that some calls to mult are often
repeated with the same arguments so that caching would help
reducing the running time, and let us cache every input-output
pair in a simple way as in Fig. 2. In the worst case the cache
grows until the memory is exhausted, after which the behavior
is undefined.

We assume that the cache operations are purely internal
and that the cache can hold at least N≥1 input-output pairs.
We define the set of input ports as I = {i1, i2} and
the set of output ports as O = {o} again. Let sbint =
bint stream. We lift the previous (correct) types of i1 and i2
pointwise to streams as usual. For example, type(i1) = {a ∈
(sbint×sbint → sbint) | ∀ r, s, t ∈ sbint : a(r, s) = t ⇒
(dom t = (dom r)∩(dom s)∧∀ i ∈ dom t : t(i) = ̂r(i)+s(i))},
and similar for i2. (Here, we write â for the representative
of a∈Z in bint modulo 2M+1.) We define type(o) to be
the set of all maps m ∈ (sbint×sbint → sbint) such
that whenever m(r, s) = t for streams r, s, t ∈ sbint and
i ∈ (dom r) ∩ (dom s) is such that the number of cached
entries |{(r(j), s(j)) ∈ bint2 | j≤i∧ j ∈ (dom r)∩ (dom s)}|
does not exceed N , then i ∈ dom t and we have (ŝ(i) ≥ 0 ⇒
t(i) = ̂r(i)s(i)).
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As we see, types containing functions over streams allow
representing stateful abstractions of stateful services without
actually referring to their state spaces.

2) Valuations

For a set of ports P ⊆ PORT, a valuation is a function from
the set P to the set of services that respects the types of the
ports. By P we denote the set of all valuations for P , formally,

P =
∏
p∈P

type(p) .

For pairwise different ports pi (i∈N0, i≤n) and any services
Si (i∈N0, i≤n) we write

[p0, . . . , pn 7→ S0, . . . , Sn] = {(pi, Si) | i ∈ N0 ∧ i≤n}

to denote the valuation that maps each port pi to the corre-
sponding service Si (i∈N0, i≤n).

3) Components

Informally speaking, a component consists of input ports,
output ports, and some behavior that generates services at
output ports from services at input ports. The behavior may
be nondeterministic, so we represent it by a map that assigns
a set of output-port valuations to every input-port valuation.

Definition IV.3. A component is a triple (I,O, f) where
I⊆I , O⊆O , and f : I→℘

(
O
)
.

For a component c = (I,O, f) we denote by c.in its input-
ports I , by c.out its output-ports O, and by c.fun its behavior
function f . We denote the set of all components by C .

4) Selection and Projection

To facilitate reasoning about a set of components, we
introduce now the so-called selection and projection operators.

A selection operator allows to access ports belonging to a
set of components.

Definition IV.4. The input and output ports of a set of
components C are respectively defined as

Πi(C) =
⋃
c∈C

c.in and Πo(C) =
⋃
c∈C

c.out .

To select all ports of a set of components C, we write

Π (C) = Πi(C) ∪Πo(C).

A projection operator, on the other hand, allows to access
specific components based on their ports.

Definition IV.5. For a set of components C such that no port
is common to more than one component of C and a port
p ∈ Π (C) we write

σp (C)

for the unique component c ∈ C such that p ∈ c.in∪c.out .

B. Architecture Configuration

We first define the notion of an architecture configuration,
then introduce examples, and after that proceed with the
syntactic dependency and the semantics.

1) Definition and Examples

An architecture configuration, informally, consists of a set
of components and a so-called attachment describing the
connections between the components. (From now on we say
simply “configuration” for “architecture configuration”.)

In the following, we denote by

X99KY =

{
f ⊆ X×Y

∣∣∣∣∀x, y1, y2 :

(
(x, y1), (x, y2) ∈ f
⇒ y1 = y2

)}
the set of partial maps from a set X to a set Y .

Definition IV.6. An (architecture) configuration is a pair
(C,A) where C ⊆ C and A ∈ (Πi(C) 99K Πo(C)), called
the attachment, are such that the following constraints hold.
• Different components do not share any ports, formally:

∀ c, ĉ ∈ C : c=ĉ ∨ (c.in ∪ c.out) ∩ (ĉ.in ∪ ĉ.out) = ∅.

• If a service is provided at an output port that is connected
to an input port, the component owning the input port
must be able to employ the service, i.e., the port types are
compatible. Formally:

∀ (pi, po) ∈ A : type(po) ⊆ type(pi).

The domain of the attachment is a subset of the occurring
input-ports, and the range is a subset of the occurring output-
ports, meaning that the input ports are connected to the output
ports. The attachment is a partial map, since not necessarily
all input ports are internally connected, but whenever an input
port is connected, it accepts services only from one output
port. In contrast, an output port may provide services to zero,
one, or multiple input ports.

As a preparation for an example, let the set of optional
values over a set β be defined as β? = (None | Someβ) (i.e.,
the disjoint union of a singleton and β, written in ML style).

Example IV.7 (Distributed producer-consumer). In the
producer-consumer configuration

Sender = ({is},{os},s) Receiver = ({ir},{or},r)is
os ir or

Sender is the producer component, Receiver is the consumer
component, and the single arrow denotes the attachment
{(ir, os)}. Let D be the set from which transmitted data is
taken.
The types are expressed in terms of streams of optional data.
Let type(is) = {x ∈ D? stream | ∀ i,j ∈ domx, d,d′ ∈
D : (i<j ∧ x(i) = (Some d) ∧ x(j) = (Some d′))⇒ i+2 < j}
be the set of all streams over D? such that between any two
Somes there are at least two Nones (which represent time steps
needed for transmission and acquiring an acknowledgment).
Let type(os) = type(ir) be the set of all streams over
None | SndD | Ack (i.e., the disjoint union of a single-
ton, D, and another singleton, written in ML style) that, if
they are nonempty, start with a nonempty stream of Nones
and, if this prefix is finite, followed by a finite or infinite
number of subsequences described by the regular expression
(Snd d)None∗Ack None+, and, if this prefix is still finite,
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followed by an arbitrary stream of Nones. Here, Snd d serves
as a transmission message and Ack as the acknowledgment
of receipt. Let type(or) = {x ∈ D? stream | (0 ∈ domx ⇒
x(0) = None)∧(1 ∈ domx⇒ x(1) = None)∧(2 ∈ domx⇒
x(2) = None) ∧ ∀ i,j ∈ domx, d,d′ ∈ D : (i<j ∧ x(i) =
(Some d) ∧ x(j) = (Some d′)) ⇒ i+2 < j} be the set of all
streams over D? that start with three Nones and such that any
two consecutive Somes are separated by at least two Nones.
The behavior map of the sender s takes a stream x ∈ type(is),
and returns the set of all such streams from type(os) that
result from x by replacing each longest contiguous subse-
quence (Some d) None . . . None︸ ︷︷ ︸

n≥2 times

by subsequences of the form

None(Snd d) None . . . None︸ ︷︷ ︸
i times

Ack None . . . None︸ ︷︷ ︸
n−i−2 times

for all i∈N0 ∩

[0, n−2], n ∈ N+ ∪ {∞}. This way we model that the sender
waits for an acknowledgment receipt.
The behavior function of the receiver r takes a stream
y ∈ type(ir). If y contains a subsequence of the form
(Snd d)None, the empty set is returned. Otherwise the single-
ton is returned which contains the sequence that results from
substituting each subsequence of the form (Snd d)Ack None
by None None(Some d) in y. This way we model that the
receiver sends an acknowledgment immediately after receiving
data.

Example IV.8 (Web services). Consider an online holiday
booking site. In the distributed world of web services, the
booking site expects that at certain web addresses, providers
of real services like car hire companies, hotels, and airlines
provide booking interfaces. Simplifying, the input ports are the
names of those interfaces, say, web addresses with a network
interface suitable for machine-to-machine communication. The
input services are then maps from customer data to tokens con-
firming bookings. The output ports are HTTP addresses and
the output services are maps from certain extended customer
data to human-readable booking confirmations. We may even
have a chain of servers of different specializations between
the real hotel interfaces and the holiday booking site.

2) Syntactic Dependency

In a configuration, the attachment relation induces a de-
pendency relation between the components. We say that a
component c syntactically depends on another components c′,
if an input port of c is connected to an output port of c′.

Definition IV.9. Syntactic dependency for a configuration z =
(C,A) is a relation ≺z ⊆ C × C defined by

c′ ≺z c
def⇐⇒ ∃ i ∈ c.in, o ∈ c′.out : (i, o) ∈ A .

For a configuration z = (C,A), we denote by ≺+
z the

transitive closure of ≺z and by ≺∗z the reflexive-transitive
closure of ≺z . Moreover, we denote by ≺z _ : C → ℘ (C),
defined via

≺z c = {c′ ∈ C | c′ ≺z c} for c ∈ C ,

all components c′ that a given component c syntactically

depends on (≺∗z _, ≺+
z _ for [reflexive-] transitive dependency,

respectively).
Note that the syntactic dependency relation is not transitive

in general: just because a component c1 depends on another
component c2 which depends on a third component c3, this
does not necessarily mean that c1 depends on c3.

3) Upper-Level and Lower-Level Components

For each component in a configuration, we can identify
its upper- and lower-level components. The upper-level com-
ponents are all the components that transitively syntactically
depend on the original component, excluding the original
component itself. The lower-level components, on the other
hand, are all the components that the original component
reflexively-transitively syntactically depends on. In the sequel,
we drop “-level” for brevity.

Definition IV.10. Let z = (C,A) be a configuration. The
upper components of a component c ∈ C are

c↑z =
{
c′ ∈ C \ {c} | c ≺+

z c
′} ,

and its lower components are

c↓z = {c′ ∈ C | c′ ≺∗z c} .

The lower components of a set of components S ⊆ C are

S↓z =
⋃
c∈S

c↓z .

4) Semantics

Now we are going to define the computational meaning of a
configuration. As a preparation, we define the open input-ports
of a configuration (C,A) as

Πin((C,A))
def
= Πi(C) \ (domA).

In the following, for a (partial) map f and a set Z, we write
f |Z for the restriction of f to the domain (dom f) ∩ Z.

Definition IV.11. Given a configuration z = (C,A), the
semantics of a set of components S ⊆ C is a map Jz, SK :

Πin(z)→ ℘
(

Πo(S↓z)
)

,

µ 7→
{
ν|Πo(S) such that (1)

ν ∈ Π(S↓z) (2)
∧ ν|Πin(z) = µ|Π(S↓z) (3)

∧ (∀ i ∈ Πi(S↓z) \ (Πin(z)) : ν(i) = ν(A(i))) (4)

∧ (∀ c′ ∈ S↓z : ν|c′.out ∈ c′.fun(ν|c′.in))
}

(5)

Intuitively, given a valuation µ of the open input ports, an
element of the component semantics Jz, SK(µ) is created by
restricting (line 1) a valuation ν of all the ports of the lower
components (line 2) that is consistent with µ (line 3), with the
attachment, restricted to the lower components (line 4), and
with the behaviors of the lower components (line 5).

We shorten the semantics of the whole configuration
J(C,A), CK to J(C,A)K and the semantics of one component
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Jz, {c}K to Jz, cK. In the sequel we concentrate on the seman-
tics of single components.

A component of an architecture configuration is usable iff
its semantics can be nonempty. Formally:

Definition IV.12. Let z = (C,A) be a configuration and c ∈
C. Then c is called usable iff ∃µ ∈ Πin(z) : Jz, cK(µ) 6= ∅.

C. Semantic Dependencies

In this section we are going to investigate the notion of
semantic dependency. To define it, we first have to introduce
the concept of an architecture update.

1) Architecture Update

A key concept in developing a piece of software is changing
the semantics of a component. We model such a change of the
semantics of a component through an update function.

Definition IV.13. For a component c = (I,O, f) and a map
f ′ : I → ℘

(
O
)
, a semantic update [c / f ′] is the component

(I,O, f ′).

Note that a semantic update is indeed a component according
to Def. IV.3.

The notion of semantic update easily generalizes to config-
urations:

(C,A) [c / f ′] = ((C\{c}) ∪ {[c / f ′]}, A) .

Proposition IV.14. For a configuration z = (C,A), compo-
nent (I,O, f) ∈ C, and a map f ′ : I → ℘

(
O
)
, z [c / f ′] is a

configuration.

2) Weak Semantic Dependency

Besides the syntactic dependency relation between compo-
nents of a configuration we also have semantic dependency
relations between those components. Informally, a component
c weakly semantically depends on a component c′ if updating
c′ may influence the semantics of c.

Definition IV.15. Weak semantic dependency for a configura-
tion z = (C,A) is a relation �z ⊆ C × C defined by

c�zc
def⇐⇒ ∃f∈

(
c.in→℘(c.out)

)
: Jz, cK 6= Jz[c/f ], [c/f ]K

for all c ∈ C and

c′�zc
def⇐⇒ ∃f∈(c′.in→℘(c′.out)) : Jz, cK 6=Jz[c′/f ], cK

for all c 6= c′ in C.

As expected, weak semantic dependency implies the
reflexive-transitive syntactic dependency:

Theorem IV.16. In any configuration z we have �z ⊆ ≺∗z .

In particular, if c does not reflexively-transitively syntacti-
cally depend on c′, any changes in the behavior of c′ have no
influence on the semantics of c, so in the development process
there is no need to re-test or re-verify c. This results in time
and cost savings during development.

Weak semantic dependency is a coarse notion: the reverse of
Thm. IV.16 holds under particular circumstances. Whenever c

is usable and syntactically reflexively-transitively depends on
some c′, c′ may just stop providing services, thus resulting in c
also stopping to provide services; hence c weakly semantically
depends on c′. It does not matter hereby how the services
provided by c′ are actually used; what matters, is just their
presence:

Theorem IV.17. Usable components depend reflexively-
transitively syntactically iff they depend weakly semantically.
Formally:
Let c ∈ C be a usable component of a configuration z =
(C,A) and c′ ∈ C. Then

c′ �z c ⇔ c′ ≺∗z c .

3) Strong Semantic Dependency

Due to the equivalence in Thm. IV.17, we need a stronger,
more fine-grained notion of dependency. We start by an
auxiliary definition.

For a configuration z = (C,A), a component c ∈ C, and a
map f : I → ℘

(
O
)
, we say that the updating of c in z by f

is live iff

∀µ ∈ Πin(z) : Jz, cK(µ) 6= ∅ ⇒ Jz, [c/f ]K(µ) 6= ∅ ,

i.e., informally, [c / f ] continues to produce some output
whenever c did so.

Informally, a component c strongly semantically depends on
a component c′ if updating c′ may influence the semantics of
c but not destroy it completely.

Definition IV.18. Strong semantic dependency for a configu-
ration z = (C,A) is a relation ≪z ⊆ C × C defined by

c≪z c
def⇐⇒ ∃ f ∈

(
c.in → ℘(c.out)

)
:

the updating of c in z by f is live and
Jz, cK 6= Jz[c/f ], [c/f ]K


for c ∈ C and

c′ ≪z c
def⇐⇒ ∃f ∈ (c′.in → ℘(c′.out)) :

the updating of c′ in z by f is live and
Jz, cK 6=Jz[c′/f ], cK


for c 6= c′ in C.

By defintion, strong semantics dependency implies the weak
one, and, by Thm IV.17, also implies the reflexive-transitive
syntactic dependency. In general:
• Neither weak nor strong semantic dependency imply direct

syntactic dependency.
• Reflexive-transitive syntactic dependency does not imply

strong semantic dependency.

D. Semantics Analysis

In this section we consider a fast way of analyzing the
semantics of components in a configuration.
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Constructing the exact semantics of a component involves
constructing a set of valuations of ports of all lower compo-
nents. In the finite case, the number of such valuations is in
general exponential in the number of components, implying
exponential worst-case space consumption and running time.
We show how to obtain an overapproximation of the semantics
that has an asymptotically linear space consumption and, under
modest additional assumptions, polynomial running time.

For this section we fix a configuration z = (C,A) and
one of its components c∈C whose semantics we are going
to analyze. Given a valuation µ ∈ Πin(z) of the open input-
ports, let the concrete domain

Dz,c(µ) = ℘({v ∈ Π(c↓z) | v|Πin(z) = µ|Π(c↓z)

∧ ∀ i ∈ Πi(c↓z) \ (Πin(z)) :

v(i) = v(A(i))})

be the power set of valuations of all the relevant ports such
that the services at each pair of attached ports coincide. Let us
equip Dz,c(µ) with the subset partial order ⊆. Let the abstract
domain

D#
z,c =

∏
r≺∗zc

℘
(
r.out

)
be the set of tuples of sets of valuations of relevant output ports
of individual components, equipped with the componentwise
subset partial order. Both domains are complete lattices. We
use Dz,c(µ) to provide the exact semantics of c in z (as in
Def. IV.11) and D#

z,c to define the approximate semantics.
A component-Cartesian step of the configuration is given

by the map
post#

z,c(µ) : D# → D#,

S 7→
({
w|O | ∃ I,f : s = (I,O,f) ∧ w|O ∈ f(w|I)
∧ w ∈ I ∪O ∪ {o|∃ i∈I : (i,o)∈A}
∧ w|Πin(z) = µ|I
∧ (∀ (i, o) ∈ A : i ∈ I ⇒ w(i) = w(o))
∧ (∀ r ∈≺z s ∃ v∈Sr : v|{o|∃ i∈I : (i,o)∈A} =

w|{o∈r.out|∃ i∈I : (i,o)∈A})
})
s∈c↓z

.

Intuitively, the component-Cartesian step takes an element
of the abstract domain and constructs all the possible resulting
services, forgetting all dependencies between the components
except those imposed by applying the behavior maps to parts
of µ. This map is isotone, hence it has the greatest fixpoint
by Tarski’s fixpoint theorem [26].

Let the component-Cartesian semantics of component c
be the valuation of the output ports of c of the great-
est fixpoint of the component-Cartesian step: Vz, cW(µ) :=
(gfp post#

z,c(µ))c.

Theorem IV.19. For all valuations µ of open input-ports,
the component-Cartesian semantics of a component c is an
overapproximation of the semantics of c, formally: Jz, cK(µ) ⊆
Vz, cW(µ).

The greatest fixpoint (and, hence, the component-Cartesian
semantics) is typically constructed by computing the limit of
a lower iteration sequence [27].

Component 2

Component 1

Component 0

Figure 3: Layered architecture style.

In the finite case (to be a bit more precise, when∣∣∣⋃r≺∗zc(c.in ∪ c.out) ∪⋃ type
(⋃

r≺∗zc
(c.in ∪ c.out)

)∣∣∣ < ∞)
and certain restricted infinite cases the exact semantics and
the component-Cartesian semantics can be computed precisely.
Let us assume the finite case and a constant upper bound
on the number of ports of each component. Then

|D#
z,c|

|Dz,c(µ)|
approaches zero with the growing number of components (e.g.,
when copies of the components with their ports are created
and µ is extended appropriately). Since |D#

z,c| is linear in the
number of components, and the constructed valuations have
a bounded-size domain, the time to construct the component-
Cartesian semantics has a polynomial (hence better compared
to the exact semantics) asymptotic upper bound in the number
of components.

Background on variants of (Cartesian) abstract semantics
can be found in, e.g., [28], [29], [30], [31], [32].

V. VARIANTS

Now we are going to impose certain constraints on our
model and investigate the obtained variants. We are going to
consider the layered architecture variant and the strict variant.

A. Layered Variant

Fig. 3 depicts the layered architecture style as usually seen
in informal descriptions of the style. The picture suggests
that in a layered architecture style, upper components use
services from the lower components, but not vice versa: lower
components are not allowed to use services from the upper
components. Thus, the topology of the configuration forms,
up to self-loops, a directed acyclic graph. Informally, in the
layered variant, components from the same level are gathered
into layers. In a nonempty set of components one should
be able to distinguish the lowest layers, leading us to the
following definition:

Definition V.1. A configuration is layered iff its syntactic
dependency relation is well-founded, i.e., iff every nonempty
set of components contains a component that syntactically
depends at most on itself:

(C,A) is layered def⇐⇒
(∀S ⊆ C : S 6=∅ ⇒ (∃ s∈S ∀ t∈S : t ≺z s ⇒ t=s)) .

In layered configurations the syntactic dependency is always
acyclic up to self-loops. If the number of components is finite
(which is usually the case in real-world architectures), also the
reverse holds. Formally, for all configurations z = (C,A) we
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have:
(z layered ⇒ ∀ c∈C : (c, c) /∈ (≺z \ idC)+)

∧ (C finite ⇒ (z layered ⇐ ∀ c∈C : (c, c) /∈ (≺z \ idC)+)).

In the finite case, the computation of the component-Cartesian
semantics can proceed bottom-up.

In Example IV.7 we find a very simple layered configura-
tion.

1) Implications

In the following we are going to investigate properties of
layered configurations.

One direct consequence is that the upper and the lower
components of any component are distinct:

Lemma V.2. For a layered configuration z = (C,A), we have

∀ c ∈ C : c↑z ∩ c↓z = ∅.

We shall use this property later on to prove some other,
characteristic properties for layered configurations.

a) Semantic Independence from Upper Components

A useful property of layered configurations is that for each
component, changing the semantics of an upper component
does indeed not change the semantics of the original compo-
nent.

Theorem V.3. For a layered configuration z = (C,A) and a
component c ∈ C, we have:

∀m ∈ c↑z, f ∈ (m.in→℘(m.out)) : Jz, cK = Jz[m/f ], cK.

A direct consequence of the above property is that a com-
ponent of a layered configuration is semantically independent
of all its upper components.

Corollary V.4. For a configuration z = (C,A) and a
component c ∈ C, we have:

∀m ∈ c↑z : m 6� zc.

The above properties ensure that for a component c of a
layered configuration, every modification of its upper compo-
nents does not impact the semantics of c. Thus, re-testing or
re-verifying c after such modifications is not necessary, not to
say useless. This is a good example of how architectural design
decisions influence quality attributes of the resulting software
system: in that we restrict a software systems architecture to
a layered architecture style, we increase the maintainability of
the resulting system.
Note V.5. The above properties only hold for layered con-
figurations; the proofs rely on acyclic dependencies. For
configurations with cyclic dependencies, the above properties
do not hold in general.

b) Semantic Independence of Lower Components

Another important property of layered configurations re-
gards the influence of changing (adapting) a component’s
behavior to its upper components. It turns out that under
certain circumstances, changing a component’s behavior does
indeed not influence its upper components.

Notice that SERVICE might contain not the actual low-level
services, but their abstractions. Hence, changing the actual
low-level implementation of a component does not necessarily
imply that its formal behavior changes or that the semantics
of the upper components change:

∀ g ∈ (c.in→℘(c.out)) : g = c.fun ⇒
∀ c′ ∈ c↑z : Jz, c′K = Jz[c/g], c′K.

The constraint g = c.fun is actually the strongest one to
ensure that the configuration semantics of upper components
is not influenced by the change. In the following we will give
another, weaker constraint which yields the same result.

Theorem V.6. Let z = (C,A) be a layered configuration,
c∈C, and g : c.in → ℘

(
c.out

)
some map. Let

∀µ ∈ Πin(z), η ∈ c.in : c.fun(η) = g(η) ⇐η|Πin(z) = µ|c.in ∧

∀m∈C\{c}:
(
m≺zc ⇒ ∃ ξ∈Jz,mK(µ) :
∀ (i, o)∈A∩(c.in×m.out): η(i)=ξ(o)

). (6)

Then ∀ c′ ∈ C : Jz, c′K = Jz[c/g], if c′=c then [c/g] else c′K.

The assumption of Thm. V.6 is a weaker constraint that
ensures that a change of a component’s behavior does not
influence the other components of the architecture. It requires
the new component to behave the same as the old one
under some circumstances, which are described by (6) and
characterize all valuations which are possible for the changed
component in its environment.

Our proof of Thm. V.6 uses neither well-foundedness nor
acyclicity for the “⊆” part; thus, the left inclusion holds
also for nonlayered configurations. However, as shown by
Ex. V.7 below, the right inclusion “⊇” requires acyclicity. This
example will also demonstrate a possibility of a more fine-
grained modeling of a system which was coarsely modeled
earlier.

Example V.7 (Distributed producer-consumer). Let us model
the producer and the consumer by a configuration z = (C,A),
in which, as opposed to Example IV.7, the channels for
data transmission and receipt acknowledgment are represented
separately:

Sender = ({is, is_ack}, {os_data}, s)

Receiver = ({ir_data}, {or, or_ack}, r)

is

is_ack os_data

ir_dataor_ack

or

Sender is the producer component, Receiver is the con-
sumer component, and the arrows denote the attachment
{(ir_data, os_data), (is_ack, or_ack)}. Reusing notation from Ex-
ample IV.7, let D be a nonempty set from which transmitted
data is taken.
The types are similar to before. Formally, let type(is) =
{x ∈ D? stream | ∀ i,j ∈ domx, d,d′ ∈ D : (i<j ∧ x(i) =
(Some d) ∧ x(j) = (Some d′)) ⇒ i+2 < j}, and type(or)
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= {x ∈ D? stream | (0 ∈ domx ⇒ x(0) = None) ∧
(1 ∈ domx ⇒ x(1) = None) ∧ (2 ∈ domx ⇒ x(2) =
None) ∧ ∀ i,j ∈ domx, d,d′ ∈ D : (i<j ∧ x(i) = (Some d) ∧
x(j) = (Some d′)) ⇒ i+2 < j}, and type(os_data) =
type(ir_data) = {y ∈ (None|SndD)stream | (0 ∈ dom y ⇒
y(0) = None) ∧ ∀ i,j ∈ domx, d,d′ ∈ D : (i<j ∧ x(i) =
(Snd d) ∧ x(j) = (Snd d′)) ⇒ i+2 < j}, and type(is_ack)
= type(or_ack) = {x ∈ (None|Ack)stream | (0 ∈ domx ⇒
x(0) = None) ∧ (1 ∈ domx ⇒ x(1) = None) ∧ ∀ i,j ∈
domx : (i<j ∧ x(i) = x(j) = Ack)⇒ i+2 < j}.

The sender, roughly speaking, waits for exactly one ac-
knowledgment from a previous transmission on port is_ack

if there was any, and only then accepts new data from is
for sending through os_data in the next step. Formally, the
behavior s takes a valuation [is, is_ack 7→ x, y] and returns a
singleton containing a valuation of os_data by a stream of the
maximal length n, which may be infinity, such that for all
m<n, (the number of Somes till and including position m in
x) − (the number of Acks till and including position m in y)
∈ {0, 1}, and for all d∈D, whenever xm = Some d, then ∃ k ∈
dom y : k ≥ m+2 ∧ k ∈ dom y ∧ ym = ym+1 = None ∧ yk=
Ack ∧ ∀ j ∈ N+ ∩ [m+1, k] : (j ∈ domx⇒ xj = None). The
returned stream for os_data results from replacing substrings
of the form (Some d)None in (xi)i<n by None(Snd d) (where
d∈D), and, if x = (xi)i<n and the final symbol in x exists
and is Some d, replacing it by None(Snd d) (where d∈D).

For the sake of the example, let us first assume a useless
receiver whose behavior r always produces the empty set.
Then, by Def. IV.11, Jz,SenderK(µ) = ∅ for all µ ∈ {is}.

Second, consider a usable behavior r′ (intended to replace
the useless one for the receiver), which, roughly speaking, ac-
cepts the data from ir_data, sends the acknowledgment receipt
in the next step to or_ack, and then outputs the data to or.
Formally, consider the map r′ : {ir_data} → ℘

(
{or_ack, or}

)
that takes a valuation [ir_data 7→ w] for some w and returns a
singleton containing a valuation of {or_ack, or} by two streams
of lengths n and n+1 (if n<∞) or both ∞ (if n=∞), such
that n is the maximal element of N0 ∪ {∞} such that for
all m<n, whenever for some d∈D we have wm = (Snd d),
then (m+1 ∈ domw ⇒ wm+1=None) ∧ (m+2 ∈ domw ⇒
wm+2=None). The returned stream for or_ack is built from
(wi)i<n by replacing substrings of the form (Snd d)None
by NoneAck (where d∈D), and, if w = (wi)i<n and the
final symbol of w is Snd d, replacing it by NoneAck (where
d∈D). The returned stream for or is built from (wi)i<n
by replacing substrings of the form (Snd d)NoneNone by
NoneNone(Some d) (where d∈D), and, if w = (wi)i<n and
w ends in Snd d or (Snd d)None, replacing this suffix by
NoneNone(Some d) (where d∈D).

Notice that the only m ∈ C such that m ≺z Receiver is
m = Sender, and Jz,mK(µ) is empty for every µ ∈ {is} due
to the uselessness of the receiver in z. Hence the condition
“∃ ξ ∈ Jz,mK(µ) . . .” from (6) is not satisfied, hence the
condition
∀µ ∈ Πin(z), η ∈ Receiver.in : Receiver.fun(η) = r(η) ⇐

Component 2

Component 1

Component 0

Figure 4: Strict layered architecture style(
η|Πin(z) = µ|Receiver.in ∧
∀m∈C\{Receiver} : (m≺zReceiver⇒ ∃ξ∈Jz,mK(µ) . . .)

)
of Thm. V.6 is fulfilled. Nevertheless, e.g., for each
single-data input-port valuation µ = [is 7→ Some d]
we have Jz[Receiver/r′],SenderK(µ) = {[os_data 7→
NoneNoneNone(Snd d)]} ) ∅ = Jz,SenderK(µ) (where
d∈D).

Thm. V.6 can be used by an architect to modify a component
without the need to test the other components, since their se-
mantics is guaranteed to stay the same after the modification.

B. Strict Variant

Figure 4 depicts the strict variant of the layered architecture
style as usually found in informal descriptions of the style.

A configuration is called strict if every pair of components
is transitively syntactically connected in at most one way.

Formally, a configuration z = (C,A) is strict iff for all
c, c′ ∈ C and all walks τ, θ in the graph (C,≺z\idC) from c
to c′ we have τ = θ.

Strict configurations with finitely many components are lay-
ered. In a strict configuration with finitely many components
it is possible to compute the component-Cartesian semantics
of a component in linear time in the number of components.
Namely, given a valuation µ of the open input-ports, start
with the bottom components and compute the entries of
gfp post#

z,c(µ) bottom-up. In layered configurations we may
lose precision this way, but in strict ones the component-
Cartesian analysis is exact:

Theorem V.8. In a strict configuration z, the component-
Cartesian semantics of a component c is equal to the semantics
of c, formally: Jz, cK = Vz, cW.

VI. CONCLUSION

This work provides an abstract model for the service-
oriented architecture style and two variants thereof: the layered
variant and the strict variant.

Our model is based on the notion of services and ports
which can supply services. A component contains input and
output ports; its behavior is modeled as a function from input-
port valuations to sets of output-port valuations. A (service-
oriented architecture) configuration is a pair of a set of
components and an attachment describing the connections
between the components’ input and output ports. The layered
variant requires the syntactic dependency relation to be well-
founded, while the strict variant adds an antitransitivity re-
quirement. Components can depend on each other syntactically
or semantically, while semantic dependence is separated into
a weak and a strong one.
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We showed how to analyze components and prove proper-
ties of the semantics of a component. Our approach applied
well-known Cartesian abstract interpretation to the service-
oriented architectures. We also formally identified upper and
lower levels of components relative to a fixed component.
For layered architectures, we demonstrated that a component
is indeed semantically independent of its upper components.
Finally, we revealed conditions that ensure that changing a
component’s behavior does indeed not influence the configu-
ration semantics of other components.

Our results offer a technology-independent characterization
of the service-oriented architecture style, which may be used
by software architects to ensure that a system is indeed built
according to that style. Moreover, our results give the software
architect a set of guarantees which are assured to hold for a
software system built according to the style.

Concluding, we want to discuss one potential weak point
of all formal approaches in software engineering, namely
scalability. With our approach we address this issue by con-
centrating on the specification and analysis of system families
rather than of single systems. Thus, the specification of a style
(such as the model for layered architectures provided in this
article) can be used for all systems built according to that style.
Moreover, the results of style analysis (such as the theorems
regarding semantic independence of layers provided in this
article) apply to all systems built according to that style.

Having developed a formal model of service-oriented archi-
tectures and two common variants thereof, the model can now
be used for a rigorous analysis of the style. Thus, future work
arises in three main areas:
1) First, new variants of the style should be identified and

defined through constraints over our model.
2) Then, for each variant (existing and new ones), a set

of properties should be formulated and proved from the
constraints.

3) Finally, the approach should be applied to investigate other
architectural styles as well (e.g., Blackboard) to establish
a rigorous theory of architectural styles.
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