A Model of Layered Architectures

Diego Marmsoler Alexander Malkis Jonas Eckhardt

Technische Universitidt Miinchen
Germany

Architectural styles and patterns play an important role in software engineering. One of the most
known ones is the layered architecture style. However, this style is usually only stated informally,
which may cause problems such as ambiguity, wrong conclusions, and difficulty when checking the
conformance of a system to the style. We address these problems by providing a formal, denotational
semantics of the layered architecture style. Mainly, we present a sufficiently abstract and rigorous
description of layered architectures. Loosely speaking, a layered architecture consists of a hierarchy
of layers, in which services communicate via ports. A layer is modeled as a relation between used and
provided services, and layer composition is defined by means of relational composition. Furthermore,
we provide a formal definition for the notions of syntactic and semantic dependency between the
layers. We show that these dependencies are not comparable in general. Moreover, we identify
sufficient conditions under which, in an intuitive sense which we make precise in our treatment, the
semantic dependency implies, is implied by, or even coincides with the reflexive-transitive closure
of the syntactic dependency. Our results provide a technology-independent characterization of the
layered architecture style, which may be used by software architects to ensure that a system is indeed
built according to that style.

1 Introduction

Lack of discipline is a substantial technical source of failures in a number of software product lines
[7, 15] (while other sources as, e.g., bad management, also exist). A poor architecture can result in a
disaster for the whole project [10], hence, “expanding formal relationships between architectural design
decisions and quality attributes” [19] has been identified as a promising future direction to go for the
field. We address the lack of discipline in architectural design [4] by providing a formal model for one
of the most important architectural styles, namely, the layered architecture style, which is also known as
the virtual machines style.

While this work contributes to a rigorous theory of architecture styles, we believe that it has also im-
plications for the practicing architecture researcher and the prospective software architect. The software
architecture researcher can rely on a mathematical model when working with styles, while the prospec-
tive architect is provided with a solid foundation for her/his work. A theory of styles would provide
the architect with a set of properties which allows her/him to decide whether a system is actually built
according to a specific style, in our case, the layered architecture style. Moreover, the outcome of the
analysis would provide the architect with a set of properties she/he can rely on from a system built ac-
cording to a style, for example, semantic independence of lower-level layers from upper-level layers for
systems built according to the layered architecture style.

1.1 Approach

In previous work [17], we describe an approach to formalize architectural styles. Based on the insight
that each style requires its own semantic domain [1], this approach roughly follows three main steps:

© D. Marmsoler, A. Malkis, J. Eckhardt
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
FESCA 2015


http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A Model of Layered Architectures

e Find a mathematical model which reflects the nature of the style. This is probably the most difficult
part, since the model must reflect the fundamental characteristics of a style. It should be as abstract
as possible to allow the results of later analyses to be applied to a broad range of systems. If for
some style an adequate model already exists, this step can be skipped.

e Provide a set of axioms for the model which constrain its structure. Through the addition of
new axioms it is possible to specialize a style and investigate variations thereof. For example, in
the layered architecture style, a configuration is usually isomorphic to a directed acyclic graph.
However, we could add an axiom which restricts configuration to a directed sequence of layers to
get a description of the strict version of the style.

e Finally, we can analyze a style by means of mathematical proofs. We can state characteristic
properties for a style and prove them from our model.
In the following we apply our approach to the layered architecture style as described in [9, 20, 22].
Our major contributions are:
e an abstract and nonetheless precise notion of a layer (for this moment, one can loosely think of a
layer as a provider of services that uses some other services),
e anotion of a layered architecture configuration, which is a collection of layers connected via ports
(detailed later in the paper),
e adenotational semantics of a layered architecture configuration,
e a model for updating a layer, i.e., changing its semantics,
o for a pair of layers of a layered architecture configuration, the notions of
— asyntactic dependency and
— asemantic dependency,
e examples on which the dependencies differ,
o the following (for now intuitively stated) link between the dependencies:
— in any layered architecture configuration the semantic dependency implies the reflexive-
transitive closure of the syntactic dependency,
— in any so-called usable layered architecture configuration the semantic dependency is equiv-
alent to the reflexive-transitive closure of the syntactic dependency.

2 Background and Related Work

Related work can roughly be categorized in three main areas: approaches to formalization of archi-
tectural styles, informal descriptions of the layered architecture style, and existing formal analyzes of
architectural styles.

In analyzing architectural styles, our work is actually based on work regarding approaches to for-
malization of architectural styles. In our work, we follow an approach based on Abowd et al. [1]. In that
work, the authors apply the general approach of denotational semantics to software architectures with the
fundamental insight that each architectural style needs its own semantic model. On this basis, Allen [2]
provides an architecture description language based on CSP [13] to allow the specification and analysis
of architectural styles. A different, though related approach is provided by Moriconi et al. in [18]. There,
the authors use first order logical theories to describe architectural styles and they suggest to use the
concept of faithful interpretation mappings to relate different styles. In a third approach, Le Métayer
in [16] proposes to describe architectures as graphs and architectural styles as graph grammars with the
aid of analyzing architecture evolution. Finally, Bernardo et al. [S] propose the use of process algebras
to formalize architectural types, which are weaker forms of architectural styles.



D. Marmsoler, A. Malkis, J. Eckhardt 3

To build our model for layered architectures, we heavily rely on the intuition provided by informal
descriptions of the layered architecture style. Some of the first documented descriptions of the style
can be found in the work of Shaw and Garlan [20], where they identify a set of well-known styles
observed in industry. Taylor et al. [22] elaborate on that work and distinguish between two kinds of
layered architectures: the virtual machines style and the client-server style. Finally, there exists much
literature from practicing architects documenting architectural styles and patterns. We consider [9] as
one well-known representative of this kind of works.

While all such references provide the necessary background for our study, there is another line of
research on existing formal analyzes of architectural styles which is closely related to our work. In [12],
Garlan and Notkin provide a formal basis for the implicit-invocation architectural style. The signal-
processing style is analyzed by Garlan and Norman in [11]. Moreover, we can find a formal description
of the pipes-and-filters style in the work of Allen and Garlan [3] and in Broy’s Focus-theory [8]. The
Enterprise Java Beans architectural style is formally analyzed by Sousa and Garlan in [21]. In [18], the
data-flow style is related to the pipes-and-filters style, the batch-sequential style, and the shared-memory
style. The client-server style is described by Le Métayer in [16]. Finally, there are some formal analyzes
of the layered architecture style. In [23], Zave and Rexford build a formal model of layered architectures
and use the Alloy Analyzer [14] to analyze the style. Since their analysis concentrates on network-
specific properties, it is a refinement of our model, thus, complementing our work. The work which is
probably closest to our work is the one of Broy which provides a better understanding of the layered
architecture style in [6].

In [6], Broy provides a model of services and of layered architectures based on the Focus theory [8].
In that model, a layer is a component with an import and an export interface and a layered architecture is
a stack of several layers. Although that model is an important contribution towards a better understanding
of layered architectures, the model represents computations explicitly using streams. Our model abstracts
further away from such details of computations, concentrating on the major characteristics of the style,
thus making the results applicable to several, different representations of computations. In fact, our
model is based on an abstract notion of a service, and streams are just one possible realization thereof
as shown in Ex. 3.2. Other realizations include stateless services as shown in Ex. 3.1 and more complex
interactions as shown in Ex. 3.3.

3 A Model for Layered Architectures

In the following section we provide a model of layered architectures based on ports and services. With
this model we want to provide the basis for a rigorous analysis of the style. Therefore, the model should
be as abstract as possible and capture the intuitive understanding of the style to allow formulation of
characteristic properties of the style.

3.1 Ports and Services

For our model of layered architectures, we assume the existence of sets PORT and SERVICE which contain
all ports and services, respectively. Thereby, our notion of service is rather abstract; A service can be
anything, from a simple method to a complex web-service consisting of a series of interactions. A port
is a placeholder for a set of related services; one can think of the method’s signature or of the address
of the web service. Thus, we assume the existence of a function fype: PORT — & (SERVICE), (where
#(X) is the power set of a set X) which assigns a type to each port. That is, the type of a port is simply a



4 A Model of Layered Architectures

static map<pair<bint,bint>,bint> cache; // lookup table
(bint mult(bint x, bint y) {
pair<bint,bint> p := m pair(x,y);
if(cache.count(p)>0) // if loo successful
return cache[p];
else { // if the current input has not been

il bint z :=0; 0
(bint mult(bint x, bint y) { ® — while (y>0) { O

] e bint z := 0; z :=(add(x,2);
“while (y>0) { y :=(sub(y,1);
z :=(add(x,z); QO

y :=(sub(y, 1)) /@ cache([p] := z; // store the result
../}/ 2 return z;
121" return Z; }
} }
(a) Stateless (b) Stateful

Figure 1: Stateful and stateless layers. The programming language type bint represents large integers.

set of services. We require that each port is classified either as an input port or as an output port, but not
as both. We let .# be the set of input ports and & be the set of output ports:

SFUO = PORT and SNO = 0.

Ports and services constitute the parameters of our theory. By saying what port and services are, our
theory can be applied to different contexts.
In the following, let N* be the set of positive integers, Z the set of all integers.

Example 3.1 (A model of stateless services). Consider the code depicted in Fig. 1a, where we write bint
for bigint, a programming language type of large but fixed-size integers. In this example, we define the
set of input ports as .# = {i}, i}, the set of output ports as & = {0}, where the ports are signatures, i.e.,
simplifying, strings:
ii = “bint add(bint,bint)”, i, = “bint sub(bint,bint)”, o = “bint mult(bint,bint)”.
Here, a service at a port will be a (set-theoretic) map whose signature is given by the port. For the sake
of the example, let us fix some M € N* and use bint = [—-2M 2™ — 1] for the set of representatives of
integers modulo 2Y*!, writing a for the representative of a € Z. The types of the ports are sets containing
certain partial or total maps from bint x bint to bint:
e The type of i; is the singleton set containing exactly the modular addition, which is defined for all
arguments.
e The type of iy is the set containing partial and total maps s whose result coincides with that of
modular subtraction whenever their first argument is positive and the second is 1.
e The type of o is the set of total maps m that multiply the arguments x, y modulo 2!
is nonnegative. Such m must return some result also for negative y.
In this example, the types abstract away some details about termination and outcome and all details about
the way the computations are performed. O

whenever y



D. Marmsoler, A. Malkis, J. Eckhardt 5

The above example does not use any global state. In a more complex model, a layer may also
have an encapsulated state, as it is the case for object-oriented programming languages. We can easily
encode stateful models by changing the notion of service to relate streams of concrete values of the input
parameters to streams of concrete return values, as we will see in Ex. 3.2.

In the following, let Ny be the set of nonnegative integers and dom f the domain of a (partial) map f.

Example 3.2 (A model of stateful services). The code from Ex. 3.1 is slow. For the sake of the example,
let us assume that some calls to mult are often repeated with the same arguments so that caching would
help reducing the running time, and let us cache every input-output pair in a simple way as in Fig. 1b. In
the worst case the cache grows until the memory is exhausted, after which we assume that cache insertion
and all later events may block or have an arbitrary behavior.

We assume that the cache operations are purely internal and that the cache can hold at least N input-
output pairs. We define the set of input ports as .# = {ij,i>} and the set of output ports as & = {0}
again. Let sbint = (stream bint) = bint* Ubint® be the set of streams over bint, i.e., the set of finite and
countably infinite sequences over bint, where we index the elements of a stream by the corresponding
downward-closed subset of Ny. We lift the previous types of i} and i, pointwise to streams as usual; e.g.,
type(ir) = {a € (sbintx sbint — sbint) | Vr,s,t € sbint: a(r,s) =t = (domz = (domr) N (doms) AVi €
dom¢t: t(i) = r(mz))} We define type(o) to be the set of all maps m € (sbintxsbint — sbint) such
that whenever m(r,s) =t for streams r,s,t € shint and i € (domr) N (doms) is such that the number of
cached entries |{(r(j),s(j)) € bint* | j<iA j € (domr) N (doms)}| is below N, then i € dom? and we
have (s()) > 0 = 1(i) = r(i)s(7)).

Loosely speaking, types containing functions over streams have just helped specifying stateful ab-
stractions of stateful services without actually referring to their state spaces. 0

Example 3.3 (A model of complex services). In Ex. 3.2, a service is still realized by a simple method
which depends on a global state. However, we could also think about models in which a service is
actually realized by a series of method calls, coordinated by some kind of protocol. By adjusting the
concrete notion of service, our theory can also be applied to those kind of models. Here, the behavior
of the services relates streams of concrete values for all the input parameters of all the methods in the
series with streams of output values of all the return values of the series. Ports are then a set of method
signatures equipped with an expected order of execution. Again, an output port specifies methods which
can be called within the layers implementation while an input port specifies those methods realized by a
layer. O

3.2 Valuations

For a set of ports P C PORT, a valuation is a function from the set P to the set of services that respects the
types of the ports. By P we denote the set of all valuations for P, formally,

P=T]wwelp).

peEP

Sometimes, we shall use [po, ..., py — So,...,S,] to denote a valuation of ports p, ..., p, with services
So, - - -, S5, respectively. Formally,

So 1if p = po,

[po,...,anS(),...,Sn] lpE{pi‘l’ENo/\l’SI’l}.

S, ifp=ps.



6 A Model of Layered Architectures

0
01/\ r\02

fe(l—p(0)) with f(i) = {0€ 0| 0(01)‘: i(i1) Ao(02) = i(ix)}
i1 i2

Fli
o
i

Figure 2: A layer with input-ports /, output-ports O and behavior function f.

Example 3.4 (Valuations for services). In the models described in Ex. 3.1, 3.2, and 3.3, a port valuation
just associates a services behavior with the corresponding method signature. O

3.3 Layers

Informally speaking, a layer consists of input ports, output ports, and some behavior that generates
services at output ports from services at input ports. The behavior may be nondeterministic, so we
represent it by a map that assigns a set of output-port valuations to every input-port valuation.

Definition 3.5. A layer is a triple (1,0, f), where I C ., 0 C 0, and f: I — 2 (0).

For a layer [ = (1,0, f), we denote by [.in its input-ports I, by [.out its output-ports O, and by [.fun
its behavior function f. We denote the set of all layers by .Z.

Example 3.6 (A simple layer). Consider, for example, the layer depicted in Fig. 2, which just copies
ijto oj for j € {1,2}. In our model, such a layer is represented as a triple (/,0, f) with input-ports
I = {iy,i>}, output-ports O = {01,0,} and behavior function f € (I — @(0)) with f(i) = {0 € O |
o(o1) =i(i1) No(oz) =i(in) }. O

3.4 Layered Architecture Configuration

A layered architecture configuration consists of a set of layers and an attachment describing the con-
nections between the layers. Thus, a layered architecture configuration is modeled as a pair of a set of
layers and a so-called attachment relation describing which output ports of which layers convey services
to which input ports of which layers.

In the following, we denote by

X--»Y = {fCXXY|VxyLy2: ((xy1) € fFA(x,32) € f) = y1 =2}
the set of partial maps from a set X toaset Y.

Definition 3.7. A layered architecture configuration is a pair (L,A), where LC . and A € ((U;¢p L.in) --»
(Ujel-out)), called the attachment, are such that the following constraints hold.

o Different layers do not share any ports, formally:

VikileL: k=1V (kinUk.out)N(l.inUl.out) = 0.

e If a service is provided at an output port that is connected to an input port, the layer owning the
input port must be able to employ the service, i.e. the port types are compatible. Formally:

Y (pi,po) €A type(p,) C type(pi).



D. Marmsoler, A. Malkis, J. Eckhardt 7

For a layered architecture configuration ¢ = (L,A), we denote the set of layers L by c./ and the attachment
relation A by c.conf.

The domain of the attachment is a subset of the occurring input-ports, and the range is a subset of the
occurring output-ports, signifying that the input ports are connected to the output ports. The attachment
is a partial map, since not necessarily all input ports are internally connected, but whenever an input port
is connected, it accepts services only from one output port.

Example 3.8 (A simple layered architecture configuration). Fig. 3 shows a layered architecture config-
uration ¢ = (L,A). The first component of the layered architecture configuration describes the layers,
i.e., their input and output-ports and their behavior function. In this example L = {lo,...,l,}, where
Iy = (Ik,Ok,fk) with [ = {io,k7il,k7i2,k} forO<k<mnandly= {i070}, O, = {007](,017](,02’](} forO0<k<n
and O, = {00}, and fi € (I — #(Ok)) for 0 <k < n.

The second component of the layered architecture configuration describes the attachment relation A
which relates i; ¢ with 01 41 and ipx With 02410 A = {(ijx,0jk1) | j€ {1, 2} Ak e {1,...,n}}. O

iO,n
00,n

ln = (IruOnafn)

& il,n é iZ,n
L] L]

[
01,1 02,1

Figure 3: A layered architecture configuration with n+ 1 layer instances.

3.4.1 Selection and Projection

To facilitate reasoning about layered architecture configurations, in the following we introduce two kind
of operators: selection and projection operators.
A selection operator allows to access ports belonging to a layered architecture configuration.

Definition 3.9. For a layered architecture configuration c, we define port selection as follows:
I (c) = U Linand II, (¢c) = U l.out.
lec.d lec.d

To select all ports of a layered architecture configuration, we just write
I(c) =1 (c) UI, (c). (D1

To select only the open input-ports (input ports which are not attached) of a layered architecture config-

uration ¢, we write
IT;, (¢) = I (c) \ dom(c.conf). (D 2)

A projection operator, on the other hand, allows to access layers of a layered architecture configuration
based on their ports.



8 A Model of Layered Architectures

Definition 3.10. Given a layered architecture configuration ¢ and a port p € [l.inU![.out for some [ € c.,
we define the layer projection
o,(c)=1.

By Def. 3.7, the layer possessing a given port is unique, so o (.) is well-defined.

3.5 Semantics

Now we are going to define the computational meaning of a layered architecture configuration.
In the following, for a map f: X—Y, we write f|; for the restriction of f to the domain XNZ.

Definition 3.11. For a layered architecture configuration c, the attachment-closure l.out® of the output
ports of a layer / is

Lout" =({PCI(c)|l.out CP (1)
A (VY (i,0) € c.conf: i€ P=0€P) 2)
A(No€Tl,(c): 0 € P=0,(c).inCP)}. 3)

The configuration semantics of a layer [ € c.lis a function [[].: ITy, (c) — 2 (l.out), with

e (1) = {Vliow | v € Lout* @
A W 1our = V’H,-n(c) (5)
A (Vi € IT; (¢) NL.out™: (v(i) = v(c.conf (i)))) (6)
A (Vo eTl, (¢)Nl.our*:
A€ € 0, () fun(Vls,(c).in)  Elrow = Vlo,(c).ou) } (7)

In (4), we would not like to use all the IT(c) instead of /.our*, since, informally speaking, there might
be no consistent valuation of all the ports, but there may be a consistent valuation of a subset of ports
that is sufficient to define the output of the layer. Instead we use the minimal set of ports including /.out
and closed under the attachment relation.

Each element of the semantics [[/].(1) is created by constructing a valuation v of the ports [.out* of
the configuration that are needed for getting the value of the output ports of / and projecting v to these
output ports. In fact, line (4) says that v provides a valuation of all needed ports. Line (5) says that the
valuation of an open input-port must be taken into account if and only if we need this port. Line (6)
says that if we require the value of a connected input-port, then we use the value of the corresponding
output-port. Line (7) says that if we need a service provided by a layer, then the computation proceeds
according to the layer’s behavior function.

Example 3.12 (Calculating a layer’s configuration semantics). Consider, for example, the layered archi-
tecture configuration ¢ = ({ls,l,},A) in Fig. 4a.

Here, I = ({io,iy}, {00,004}, f) and I, = ({i1,;},{01,0)},g) with {iy,i,i1,i) } € &, {00,0),01,0;} C
0, and A = {(iy,01), (i}, 00) }-

For the sake of this example, let’s assume that {B,C,D,F,X,Y} C SERVICE and rype (iy) = {B},
type (iy) = type (07) = {X, Y }, type (i1) = {D}, type (i}) = type (0p) = {X, Y }, and type (09) = type (01) =
{C,F}. Here, we use symbols B,C, D, F for services at externally visible ports (ig,00,i1,01) and X,Y for
services at internal ports (ij), 0, i}, 0}).



D. Marmsoler, A. Malkis, J. Eckhardt 9

(a) Before update. (b) After update.

Figure 4: Layered architecture configuration consisting of two layers /¢ and /,.

The behavior functions are as follows:

7+ {iosigy = 2 ({o0.0p}) .

[io [oo

lio, iy — B,Y] > {[00,0(— F,X]};

g: {il,i’l}—h{o({ol,o’l}), li,#, > D,X] s {[o1,0, — C,X]},
i1, i} = D,Y] > {[o1,0} — F,Y]}.

Let us now apply Def. 3.11 to calculate [I¢]. (1) C {00,0( } and [I,]. (1) € {o1,0} } for u = [io, i1 — B, D).
Therefore, we first calculate all elements v € IT(c). For our simple system, v satisfies

v(io) = p(io) =B, v(i1)=pu(h)=D,
V(i) =v (o)) =X, v(i})=v(op) =X,
V(O())—C, V(O]):C.

Note that v is the only element of IT (c) that satisfies the constraints that should hold for each element of
[.]c(u) according to Def. 3.11. Thus,

[lrle() = {V]{op.p} } = {[00, 00 — C,X]} and
[l]e(1) =1Vl } = {lo1,0] = C.X]}.

3.6 Semantic Change

A key concept in developing a piece of software is changing the semantics of a layer. We model such a
change of the semantics of a layer through an update function.

Definition 3.13. For a layer [ and a map f: Lin — @ (l.out), a semantic update [l — f] is the layer
(l.in,l.out, f).

Note that a semantic update is indeed a layer according to Def. 3.5.
The notion of semantic update easily generalizes to sets of layers L C .Z:

Ll f]=E\D ULl = 11} (D 3)
Finally, it also generalizes to layered architecture configurations:

cll— f]=(c.lll — f],c.conf). (D 4)



10 A Model of Layered Architectures

Example 3.14 (A semantic update for a layered architecture configuration). Consider, for example, the
layered architecture configuration ¢ = (L,A) depicted in Fig. 4a and described in Ex. 3.12.
If we change the behavior of layer /7 to

7' Qioig} = 2 ({o0.06Y ) liosiy = B.X] > {loo, 0 = C.X]},
lio, iy > B,Y| — {[00,0( — F,Y]},
we get a new layered architecture configuration c [l — f’] where layer [ has changed to (I, Oy, f') (see
Fig 4b). Applying Def. 3.11 to calculate [[lf’]]c[lfo/} (1) € {00,0)} and [[lg]]c[lfo/} (1) C {o1,0}} for
W = [ig,i1 — B, D], produces, in addition to v, a new valuation v/, which satisfies
Vi(io) = p(io) =B, V'(i) =pu(i1) =D,
V(i) =V (o)=Y, V(i) =V(o) =7,
V/(O())ZF, V/(01)=F.

Note that v’ satisfies the constraints that should hold for each element of [.] clipr] () according to Def.

3.11 and that v, v’ are now the only elements of IT (¢) which do so. Thus,

[[lf]]c[[f}_)f/] (.u) = {v|{00,06}7 v/’{oo,of)}} = {[00706 — C,X] y [00706 = F7 Y]} and
ng]]c[l_/Hf"] (nu) = {v|{0],0'1}7 v,’{oho'l}} = {[0170/1 = C7X] ) [0] 70/1 = F, Y]} .

O]

In the above example as well as in general, a semantic update of a layered architecture configu-
ration changes neither the input/output-ports nor the attachment, thus producing a layered architecture
configuration again:

Proposition 3.15. For a layered architecture configuration c, layer [ € c.l, and amap f: Lin — £ (W)
the layered architecture configuration update c |l — f] is a layered architecture configuration.

Thus, all properties and notation introduced so far for layered architecture configurations are also
valid for layered architecture configuration updates.

3.7 Syntactic Dependency

In a layered architecture configuration, the attachment relation induces a dependency relation between
layers. We say that a layer I’ syntactically depends on another layer [, if an input port of [’ is connected
to an output port of /.

Definition 3.16. Syntactic dependency for a layered architecture configuration c is a relation <, C

c.l x c.l defined by

def . . .
<.l & 3Joclout,icl.in: o=c.conf(i).

Example 3.17 (Syntactic dependency). In the layered architecture configuration depicted in Fig. 3, we
have [; <. ;1) fori € {0,...,n—1} and no other syntactic dependencies. O

For a layered architecture configuration ¢, we denote by < the rransitive closure of <, and by <
the reflexive-transitive closure of <.. Moreover, we denote by <. _: ¢.I — @ (c.l), defined via

<em=A{l€cl|l=<.m} formec.l, (D 53)

*

all layers [ that a given layer m syntactically depends on (<} _, <*

dency, respectively).

_ for [reflexive-] transitive depen-



D. Marmsoler, A. Malkis, J. Eckhardt 11

Lemma 3.18. For a layered architecture configuration c, and layer | € c.l, the attachment closure l.out*
contains only ports of layers on which layer | reflexively-transitively syntactically depends on. Formally,
Vp € Lout*: o, (c) <% 1.

Proof. Let f: (Il (c)) — g(I1(c)),

P+ loutU{o | JieP: (i,0) € c.conf}UU{rin|r € c.l N PNr.out # 0}.

Using the fixed point theorem of Tarski one can show that [.out* = (J,c, f"(0). Fix a layered archi-

tecture configuration ¢ and one of its layers / € c¢.. We show that Vn € Ny Vp € f"(0): o, (c) <X by

induction on i.

“Yp € f2(0): 6, (c) <: " Since f°(0) = 0, the statement is vacuously true.

“Yp € f1(0): 0, (c) <:1implies Vp € f"1(0): o, (c) < 1”: Fix p e f*71(0). Atleastof the following
cases is true.
Case p € l.out: By Def. 3.10, 0, (¢) = I and by reflexivity, / <} [. Thus, 6, (c) <} [.
Case p € {o|Jie f"(0): (i,0) € c.conf}: Then there is an i € f"(0) such that (i,p) € c.conf.
By Def. 3.10 and 3.7 we have i € 0;(c).in and p € 0, (c).out. From (i,p) € c.conf we obtain
0, (c) < oi(c) by Def. 3.16. Since i € f"(0), we have o;(c) <} I by induction hypothesis. By
transitivity, o, (¢) <% [.
Case p € U{rin|r € c.IA f"(0) Nr.out # 0}: Then there is an r € c.I such that f"(0) N r.out #
and p € r.in. Since f"(0) Nr.out # 0, we have r < [ by induction hypothesis. Since p € r.in, we
have o, (c) = r by Def. 3.10. Thus, we conclude o, (¢) <7 . O

Note that the syntactic dependency relation is not transitive in general: just because a layer L; depends on
another layer L, which depends on a third layer L3, this does not necessarily mean that layer L; depends
on layer Ls.

3.8 Semantic Dependency

Besides the syntactic dependency relation between layers of a layered architecture configuration we also
have a semantic dependency relation between those layers. A layer I’ semantically depends on a layer /
if updating / may influence the configuration semantics of /’.

Definition 3.19. Semantic dependency for a layered architecture configuration ¢ is a relation <, C
c.l x c.l defined by

I<.1 & 3f¢ (Lin— @ (Lout)) : [I]c # [l = fllepsyy  foralllin c.l and
l<. '€ 3f € (Lin— o (Lout)) : [I'le # [ g foralll #/!'inc.l.

Now we provide simple examples of semantic dependency and independence.

) 0 22
g0 I — (I’ o f/)
10 T
) 7 i/
1 2
. 01 (o))
Lo
1=(1,0,f)
)

Figure 5: A simple layered architecture configuration with 2 layers.



12 A Model of Layered Architectures

Example 3.20 (Semantic dependency). As an example, consider the simple layered architecture config-
uration depicted in Fig. 5 where changing the behavior of layer [ does indeed influence the configuration
semantics of layer /.

In order to see this, we first need to formally define the behavior functions f € (I — #(0)) and f’ €
(I' - @(0’)). Let us assume that {A,B,C,D,E,F,X,Y} C SERVICE and type(io) = {A}, type(0g) =
[BY. type(or) = type(iy) = {X}, type(02) = type(is) = {Y. Z}, type(iy) = {C}, type(op) = (D} type(o}) =
{E}, and type(0)) = {F,G}. Here, we use symbols A,B,C,D,EF for services occurring at externally
visible ports (ig, 0o, iy, 07, 0}, 05) and X, Y for services occurring at internal ports (01,02, 1}, 1)

Let /: Tio} — 2 (To0,01,02} ) and f': {ig, 5,15} — 9 ({0 0], 05} ) be defined by
f([ioHA]) Z{[OQ,01,02i—>B,X,Y]},
f’([i6,i’1,i’2r—>C,X,Y]) :{[oé,oﬁ,o’zr—)D,E,F]},
[ i iy, 15— C.X,Z]) = {log,0},05— D,E,Gl} .

Now we calculate [/]. : {io, iy} — p({oo,ol,OQ}

N——

and [/]. : {io. iy} — 2 ({og),og,og}) by Def. 3.11:

[7]c ([0, iy — A,C]) = {[o0,01,02 — B,X,Y]},
17 ([io, it — A,C)) {lop,0},0, — D,E F|}.

N——

If we now replace f by g: {ip} — £ ({00,01,02} , defined as

g([io '—)A]) = {[00,01,02 *—)B,X,Z]},

we can see that [ <. I, because calculating [{] c : {i0, iy} — ({00, 01, 02}> and [I']cyisg) : {0, ig} —

((0({06,0’1,0’2}> by Def. 3.11 results in

[1Deesg ([ios i = A,C]) - ={[00,01,02 — B,X,Z]},
[[Z’Hc[ng] ([i07i6 HA,C]) = {[0670/170/2 l—)D,E,G]} .

and we see that [I'] ;g 7 [I']. O

Example 3.21 (Semantic independence). In the simple layered architecture configuration in Fig. 5
changing the behavior of layer I’ does not influence the configuration semantics of layer [.

Let us assume behavior functions f: I — ((0(5) and f': 1 — p(ﬁ) of Ex. 3.20. Then we can see
that there is no behavior function g : I’ — (0’) such that [I] . # [I]. This is the case, because the
semantics of / does not depend on any inputs from /’. Thus, we have I’ €, [. 0

3.9 Relating Syntactic and Semantic Dependencies

Having a formal model of layered architecture configurations allows us to analyze the relationship be-
tween syntactic and semantic dependencies.

An interesting property is that if layers are syntactically dependent, this does not necessarily mean
that they are also semantically dependent.

Example 3.22 (Syntactic dependency does not necessarily imply semantic dependency). Consider a
single layer with just one input and just one output port that are typed by the empty set of services and
attached to each other. According to Def. 3.16, the layer depends on itself syntactically. However, it



D. Marmsoler, A. Malkis, J. Eckhardt 13

is not possible to change the layers configuration semantics at all, since the layer’s behavior function
is the only map from the (empty) set of valuations of the input port to the (empty) set of valuations
of the output port. Thus, according to Def. 3.19, the layer does not depend on itself semantically. In
general, if SERVICE = (), any configuration with a nonempty attachment will have a pair of layers with
this property. 0

However, under certain circumstances, syntactic dependency does indeed imply semantic depen-
dency.

Definition 3.23. A layered architecture configuration c is usable iff there is at least one valuation of open
input-ports such that the configuration semantics of every layer produces at least one output valuation on

this input. Formally:

cusable <L Jpu eI, (o) Vi el: [1]. (n) #0.

Theorem 3.24. For a usable layered architecture configuration c the reflexive-transitive closure of syn-
tactic dependency implies semantic dependency. Formally: ¢ usable = <! C<,.

Proof. Let ¢ be usable and I < I’. So there is some u € I, (c) such that [I'].(u) # 0. Let g : l.in —
@ (lout), i 0.1f I =1, then [[I' — gllejrmg () = 0. If 1 # I, we inductively follow that all the layers
r # 1 such that L.out N r.out* # O satisty [r] g (1) = 0. In particular, [I'] g (1) = 0. O

Vice versa, if layers are semantically dependent, they are not necessarily (directly) syntactically
dependent.

Example 3.25 (Semantic dependency does not necessarily imply syntactic dependency). Consider a sin-
gle layer with one output port that is typed by two services and no other ports. According to Def. 3.19,
it depends on itself semantically. However, according to Def. 3.16, it does not depend on itself syntacti-
cally. Indeed, it does not have any syntactic dependency at all.

A less trivial example is demonstrated in Fig. 6, where SERVICE = {A, B}, all ports are typed by
SERVICE, L.fun = AveD.{[o— A}, I fun = Av € {i'}.{[o' — v()]}, and I" fun = Av € {i"}.{[0o" —
v(i")]}. We have I <. 1", butl A.1". O

[=(0.{0k.f) o1 = ({7} 4o} /) el = ("} 0"k Y

Figure 6: A three-layered configuration with ¢.I = {/,1’,1"} and c.conf as shown.

As we see, changing the behavior of a single layer may impact not only the configuration semantics of
directly depending layers, but also of layers which transitively depend on the modified layer.

This property of layered architecture configurations implies that a test after a change of a layers
behavior should include tests of the behavior of all semantically dependent layers. As we will see in a
moment, there is a bound on how many layers one should test.

Theorem 3.26. Semantic dependency implies the reflexive-transitive closure of syntactic dependency.
Formally: <.C<Z.

Proof. Fix a layered architecture configuration c, its layers /,I’ € c.l such that [ £* I'; we will show
1€l

Notice that [ # I’. Fix arbitrary f: l.in — @ (L.out) and it € IT;, (c). We are going to show that [I']. (i) =
[[l/]]c[l»—n‘] (.u)



14 A Model of Layered Architectures

“C” Let k € [I']c(u). By (4) of Def. 3.11 there is some v € [.out* such that v|y,, = k and (5),
(6), (7) hold for k and . Since [’ does not reflexively-transitively syntactically depend on /, by
Lemma 3.18 no ports of / are in I’.out* and we readily conclude that (4), (5), (6), (7) still hold for
i and /' if ¢ is replaced by ¢ [l f]. Thus & € [I']cy g (1)

“D”: Analogously. 0

Informally speaking, this property allows us now to restrict testing after a modification to only those
layers which (reflexively-)transitively depend on the modified layer.

Corollary 3.27. For usable layered architecture configurations, the semantic dependency and the reflexive-
transitive closure of the syntactic dependency are the same.

4 Conclusion

With this work we provided an abstract model for the layered architecture style. Our model is based on
the notion of services and ports which can supply services. A layer consists of input and output ports
and is modeled as a function from input-port valuations to output-port valuations. A layered architecture
configuration consists then of some layer instances and an attachment describing the connections between
layers’ input and output ports.

We have given a formal definition of syntactic and semantic dependency between layers. Though
syntactic and semantic dependencies do not necessarily imply one another, we have shown that the
semantic dependency implies the reflexive-transitive closure of the syntactic dependency, and the reverse
also holds for usable configurations.

Having developed a formal model of layered architectures, the model can now be used for a rigorous
analysis of the style. Thus, future work arises in two main areas: (i) First of all, different variants of the
style should be identified and defined through constraints over our model. For example, a “basic” variant
of the style would impose a well-foundedness constraint on the attachment relation and a “strict” variant
would further constrain the attachment relation to be antitransitive. (ii) Then, for each variant, a set of
properties should be formulated and proved from the constraints. For example, in the “basic” variant, we
may want to provide conditions that ensure that the configuration is usable. Moreover, the configuration
semantics of lower level layers may be strictly independent of the behavior of upper level layers and
under certain circumstances, the configuration semantics of upper level layers may also be independent
of the behavior of lower level layers. In the “strict” version, changing a layers behavior may have even
less impact on the configuration semantics of other layers within the architecture configuration.

Our work aims to contribute to a rigorous theory of architectural styles to provide a better under-
standing of architectural styles and the formal relationships between architectural design decisions and
quality attributes. Thus, two further directions for future work arise: (i) The approach used in this article
should be applied to other architectural styles as well. (ii) Then, a general theory of architectural styles
should be developed to investigate relationships between the different styles.

5 Acknowledgments

This work was partially funded by the German Federal Ministry of Education and Research (BMBF),
grants “Software Campus project RE4SoS, 011S12057”, and “ARAMIiS project, 011S11035”.

We would like to thank Manfred Broy, Wolfgang Boehm, Maximilian Irlbeck, Maximilian Junker,
Andreas Vogelsang, Vasileios Koutsoumpas, Veronika Bauer, and Daniel Méndez Ferndndez for their
comments and helpful suggestions.



D. Marmsoler, A. Malkis, J. Eckhardt 15

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

(23]

Gregory D. Abowd, Robert Allen & David Garlan (1995): Formalizing Style to Understand De-
scriptions of Software Architecture. ACM Transactions on Software Engineering and Methodology,
doi:10.1145/226241.226244.

Robert Allen (1997): A Formal Approach to Software Architecture. Ph.D. thesis, Carnegie Mellon, School of
Computer Science.

Robert Allen & David Garlan (1992): A Formal Approach to Software Architectures. Proceedings of the IFIP
12th World Computer Congress.

Len Bass, Paul Clements & Rick Kazman (2012): Software Architecture In Practice, 3rd edition. Pearson
Education, Inc.

Marco Bernardo, Paolo Ciancarini & Lorenzo Donatiello (2000): On the formalization of architectural types
with process algebras. ACM SIGSOFT Software Engineering Notes, doi:10.1145/357474.355064.

Manfred Broy (2005): Service-Oriented Systems Engineering: Specification and Design of Services and
Layered Architectures. In: Eng. Theories of Software Intensive Systems, doi:10.1007/1-4020-3532-2_2.

Manfred Broy (2011): Can practitioners neglect theory and theoreticians neglect practice? IEEE Computer,
doi:10.1109/MC.2011.305.

Manfred Broy & Ketil Stglen (2001): Specification and Development of Interactive Systems: Focus on
Streams, Interfaces, and Refinement. Springer, doi:10.1007/978-1-4613-0091-5.

Frank Buschmann, Kelvin Henney & Douglas Schimdt (2007): Pattern-oriented Software Architecture: On
Patterns and Pattern Language. Wiley.

David Garlan (2000): Software architecture: a roadmap. In: ICSE 2000, doi:10.1145/336512.336537.

David Garlan & Norman Delisle (1990): Formal Specifications as Reusable Frameworks. In: Proceedings of
the Third International Symposium of VDM Europe on VDM and Z - Formal Methods in Software Develop-
ment, doi:10.1007/3-540-52513-0_9.

David Garlan & David Notkin (1991): Formalizing Design Spaces: Implicit Invocation Mechanisms. In:
Proceedings of the 4th International Symposium of VDM Europe on Formal Software Development.

Charles Antony Richard Hoare (1985): Communicating sequential processes. Prentice Hall.
Daniel Jackson (2012): Software Abstractions: logic, language, and analysis. MIT Press.

Pontus Johnson, Mathias Ekstedt & Ivar Jacobson (2012): Where’s the Theory for Software Engineering?
IEEE software, doi:10.1109/MS.2012.127.

Daniel Le Métayer (1998): Describing Software Architecture Styles using Graph Grammars. IEEE Transac-
tions on Software Engineering, doi:10.1109/32.708567.

D. Marmsoler (2014): Towards a Theory of Architectural Styles. In: 22th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE-22), pp. 823-825, doi:10.1145/2635868.2661683.

Mark Moriconi, Xiaolei Qian & Robert A. Riemenschneider (1995): Correct Architecture Refinement. IEEE
Transactions on Software Engineering, doi:10.1109/32.385972.

Mary Shaw & Paul Clements (2006): The golden age of software architecture.  Software, IEEE,
doi:10.1109/MS.2006.58.

Mary Shaw & David Garlan (1996): Software architecture: perspectives on an emerging discipline.

Joao Pedro Sousa & David Garlan (2001): Formal Modeling of the Enterprise JavaBeans Component Inte-
gration Framework. Information and Software Technology, doi:10.1016/S0950-5849(00)00157-9.

Richard N. Taylor, Nenad Medvidovic & Eric M. Dashofy (2010): Software Architecture: Foundations,
Theory, and Practice. John Wiley & Sons.

Pamela Zave & Jennifer Rexford (2013): Compositional Network Mobility. In: Verified Software: Theories,
Tools, Experiments - 5th International Conference, pp. 68—87, doi:10.1007/978-3-642-54108-7_4.


http://dx.doi.org/10.1145/226241.226244
http://dx.doi.org/10.1145/357474.355064
http://dx.doi.org/10.1007/1-4020-3532-2_2
http://dx.doi.org/10.1109/MC.2011.305
http://dx.doi.org/10.1007/978-1-4613-0091-5
http://dx.doi.org/10.1145/336512.336537
http://dx.doi.org/10.1007/3-540-52513-0_9
http://dx.doi.org/10.1109/MS.2012.127
http://dx.doi.org/10.1109/32.708567
http://dx.doi.org/10.1145/2635868.2661683
http://dx.doi.org/10.1109/32.385972
http://dx.doi.org/10.1109/MS.2006.58
http://dx.doi.org/10.1016/S0950-5849(00)00157-9
http://dx.doi.org/10.1007/978-3-642-54108-7_4

	Introduction
	Approach

	Background and Related Work
	A Model for Layered Architectures
	Ports and Services
	Valuations
	Layers
	Layered Architecture Configuration
	Selection and Projection

	Semantics
	Semantic Change
	Syntactic Dependency
	Semantic Dependency
	Relating Syntactic and Semantic Dependencies

	Conclusion
	Acknowledgments

